
z/OS

Integrated Security Services

Enterprise Identity Mapping (EIM)

Guide and Reference

SA22-7875-07

���

z/OS

Integrated Security Services

Enterprise Identity Mapping (EIM)

Guide and Reference

SA22-7875-07

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

463.

Eighth Edition, September 2008

This edition applies to Version 1 Release 10 of z/OS (5694-A01) and to all subsequent releases and modifications

until otherwise indicated in new editions.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you

may address your comments to the following address:

 International Business Machines Corporation

 MHVRCFS, Mail Station P181

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries):

 Your International Access Code +1+845+432-9405

 IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

 World Wide Web: http://www.ibm.com/systems/z/os/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/systems/z/os/zos/webqs.html

Contents

Tables . ix

Figures . xi

About this document . xiii

Who should use this document xiii

How to use this document . xiii

Where to find more information xiii

Softcopy publications . xiii

Other sources of information . xiv

Internet sources . xiv

To request copies of IBM publications xv

Summary of changes . xvii

Part 1. EIM concepts and use . 1

Chapter 1. Enterprise Identity Mapping (EIM) 3

The problem: Managing multiple user registries 3

Current approaches . 3

The EIM approach . 4

Chapter 2. EIM concepts . 7

EIM domain controller . 8

EIM domain . 8

EIM identifier . 10

EIM identifier representing a person 10

EIM identifier representing an entity 11

EIM identifiers and aliasing 12

EIM registry definition . 13

EIM registry definitions and aliasing 15

System and application registry definitions 16

EIM associations . 17

Identifier associations . 18

Policy associations . 21

Lookup information . 24

EIM lookup operation . 25

Mapping policy support and enablement 29

EIM access control . 30

Chapter 3. Migration considerations 35

Migration from release to release 35

Migration from EIM Release 6 35

Migration from EIM Release 5 - Starting point 35

Chapter 4. Planning for EIM 37

Identifying skill requirements . 37

Team members . 37

Planning for EIM client applications 39

Planning for an EIM domain 40

Planning for EIM registries 40

Developing an identity mapping plan 41

Accessing the EIM domain 45

© Copyright IBM Corp. 2002, 2008 iii

Planning considerations for an EIM domain controller 46

Planning EIM administration tools 47

Customizing EIM on your operating system 48

Task roadmap for implementing EIM 48

Chapter 5. Setting up EIM on z/OS 49

Steps for installing and configuring the EIM domain controller on z/OS 49

Installing and configuring EIM on z/OS 52

Steps for using the eimadmin utility to manage an EIM domain 53

Domain authentication methods 57

Using simple binds . 57

Using CRAM-MD5 password protection 58

Using digital certificates . 58

Using Kerberos . 58

Using Secure Sockets Layer (SSL) 59

Installation considerations for applications 59

Configuration considerations for enabling remote services 59

Ongoing administration . 59

Managing registries . 60

Working with registry aliases 61

Adding a new user . 62

Removing a user . 63

Changing access authority 64

Chapter 6. Using RACF commands to set up and tailor EIM 67

Using RACF for EIM domain access 67

Setting up default domain LDAP URL and binding information 68

Storing LDAP binding information in a profile 68

Optionally setting up a registry name for your local RACF registry 70

Steps for setting up lookups that do not need a registry name 70

Ongoing RACF administration 71

Disabling use of an EIM domain 71

Using output from the RACF database unload utility and eimadmin to prime

your EIM domain with information 71

Chapter 7. Developing applications 77

Writing EIM applications . 77

Default registry names . 77

Defining private user registry types in EIM 77

Building an EIM application . 79

C/C++ Compile considerations 79

C/C++ Link-edit considerations 80

Preparing to run an EIM application 80

Accessing RACF profile checks 80

Special considerations for applications that will be shared between different

releases of z/OS . 82

APIs for retrieving the LDAP URL and binding information 83

Determining why a mapping is not returned 83

Chapter 8. Messages . 85

Chapter 9. The eimadmin utility 109

eimadmin . 110

Examples for working with policies 123

Creating an x.509 registry 123

Enabling or disabling a registry for lookup or policy operations 123

iv z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Enabling or disabling a domain’s use of policies 123

Creating an association using the name stored within a certificate 123

Listing an association that was created using a certificate 123

Removing an association using the name stored within a certificate 124

Creating a domain policy . 124

Listing the domain policy . 124

Deleting a domain policy . 124

Creating a registry policy . 125

Listing a registry policy . 125

Deleting a registry policy . 125

Creating a filter policy . 125

Listing the filter policy association 126

Deleting a filter policy . 126

Examples for listing various objects without an input file 126

Using an input file . 128

Input file requirements . 128

Input file contents . 129

The output file . 132

The error file . 132

Example for adding a list of identifiers to an EIM domain 132

Using eimadmin with the tabular output of SMF Unload 136

Chapter 10. EIM Auditing . 137

Auditing EIM events . 137

Categories of EIM events . 137

How events are audited . 140

What goes into an audit record 142

Working with audit records . 142

The SMF Record Type 83 subtype 2 records 143

The XML output from the RACF SMF Unload Utility 146

The tabular output from the RACF SMF Unload utility 149

Chapter 11. EIM APIs . 159

Authority to use APIs . 159

Java APIs . 159

Authorization to use EIM Services 160

Mapping C++ to Java APIs 160

Obtaining documentation for the Java APIs 163

EimRC -- EIM return code parameter for C/C++ 164

Field descriptions . 164

eimAddAccess . 166

eimAddApplicationRegistry . 170

eimAddAssociation . 174

eimAddIdentifier . 179

eimAddPolicyAssociation . 183

eimAddPolicyFilter . 187

eimAddSystemRegistry . 190

eimChangeDomain . 194

eimChangeIdentifier . 199

eimChangeRegistry . 203

eimChangeRegistryAlias . 207

eimChangeRegistryUser . 211

eimConnect . 215

eimConnectToMaster . 220

eimCreateDomain . 225

eimCreateHandle . 230

Contents v

eimDeleteDomain . 234

eimDestroyHandle . 239

eimErr2String . 241

eimFormatPolicyFilter . 243

eimFormatUserIdentity . 249

eimGetAssociatedIdentifiers . 254

eimGetAttribute . 261

eimGetRegistryNameFromAlias 265

eimGetTargetFromIdentifier . 270

eimGetTargetFromSource . 276

eimGetVersion . 283

eimListAccess . 286

eimListAssociations . 291

eimListDomains . 298

eimListIdentifiers . 305

eimListPolicyFilters . 312

eimListRegistries . 317

eimListRegistryAliases . 325

eimListRegistryAssociations . 330

eimListRegistryUsers . 338

eimListUserAccess . 344

eimQueryAccess . 351

eimRemoveAccess . 355

eimRemoveAssociation . 359

eimRemoveIdentifier . 364

eimRemovePolicyAssociation 367

eimRemovePolicyFilter . 371

eimRemoveRegistry . 374

eimRetrieveConfiguration . 377

eimSetAttribute . 383

eimSetConfiguration . 385

eimSetConfigurationExt . 387

Chapter 12. EIM header file and example 395

eim.h . 395

Example for creating LDAP suffix and user objects 418

Part 2. Working with remote services . 421

Chapter 13. The z/OS Identity Cache 423

How the z/OS Identity Cache works 423

Configuring your environment to use the z/OS Identity Cache 425

Configuring Java applications to use the z/OS Identity Cache 425

Configuring the z/OS Identity Cache 426

Configuring z/OS sysplex for the Identity Cache 430

Chapter 14. ICTX Java API 431

Configuring the IBM Tivoli Directory Server for remote services support . . . 432

/com/ibm/ictx/authenticationcontext package 432

Creating an identity context object from authentication context information 433

Delegating an identity context object 435

Parsing an identity context object for authentication context information 436

/com/ibm/ictx/identitycontext package 438

Creating a storage mechanism object for interacting with the z/OS Identity

Cache . 439

Storing an identity context object in the z/OS Identity Cache 441

vi z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Retrieving an identity context object from the z/OS Identity Cache 441

/com/ibm/ictx/util package . 442

Sample ICTX application . 442

Chapter 15. Accessing RACF remotely to perform authorization checks

and create audit records 447

Using remote authorization and audit 447

Profile authorizations for working with remote services 448

Remote authorization requests 449

Remote authorization ResponseCodes 451

Remote authorization audit controls 453

Remote auditing requests . 453

Remote auditing response codes 456

Remote audit controls . 459

Notices . 463

Programming interface information 464

Trademarks . 464

Bibliography . 467

Index . 469

Contents vii

viii z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Tables

 1. Working with domains . 32

 2. Working with identifiers . 32

 3. Working with registries . 32

 4. Working with associations . 32

 5. Working with mappings . 33

 6. Working with policy associations . 33

 7. Working with mappings . 33

 8. Working with access . 33

 9. Roles, tasks, and skills for setting up EIM . 38

10. EIM APIs software and hardware prerequisites . 39

11. Domain worksheet for creating an EIM domain . 40

12. Registry worksheet to help with planning considerations for EIM registries and associations 41

13. Identifier worksheet to help with planning considerations for identifiers 43

14. Example EIM registry definition information planning work sheet to help with planning

considerations for EIM associations . 44

15. Example EIM identifier planning work sheet . 44

16. Example identifier association planning work sheet 45

17. Example planning work sheet for policy associations 45

18. Bind worksheet to help in planning for accessing the EIM domain 46

19. Software and hardware worksheet to help in planning for your EIM domain controller 46

20. Information needed for LDAP administration . 47

21. Tasks for implementing EIM on z/OS . 48

22. EIM installation and configuration overview for the ISS LDAP server 50

23. EIM installation and configuration overview for the IBM TDS LDAP server 50

24. HFS install directories . 52

25. Decision table for RACF profiles . 68

26. LDAP information needed for creating RACF profiles 68

27. Local registry name needed for creating RACF profiles 70

28. EIM API access requirements . 81

29. Required and optional flags . 111

30. Required connection values . 120

31. Eimadmin utility exit codes . 122

32. Hexadecimal character values for invisible control characters 129

33. Summary of associated labels . 130

34. Events which are always logged . 137

35. Covering profiles in the RAUDITX class and descriptions 138

36. EIM Event Categories . 138

37. SETROPTS options for audit enablement . 141

38. Enabling EIM Auditing Using Profiles . 141

39. EIM event codes . 143

40. EIM extended relocates . 144

41. <col_id> values . 149

42. Common information in the SMF Type 83 Subtype 2 records 149

43. Event-specific fields for EIM connection events (EIMC_EVENT_TYPE is ″*CONNECT″) 153

44. Event-specific fields for EIM lookup events (EIML_EVENT_TYPE is ″*LOOKUP″) 154

45. Event-specific fields for EIM administrative events requiring changes to an EIM domain, registry,

or user access (EIMD_EVENT_TYPE is ″*ADMIN1″) 155

46. Event-specific fields for EIM administrative events involving changes to the identifiers,

associations, and policies in an EIM domain (EIMI_EVENT_TYPE is ″*ADMIN2″) 157

47. C++ to Java API mapping . 160

48. user ID mapping configuration settings . 427

49. Interfaces and classes in the com.ibm.ictx.authenticationcontext package 432

50. Methods provided by the AuthenticationInfo class 437

© Copyright IBM Corp. 2002, 2008 ix

51. Methods provided by the ManifestInfo class . 437

52. Interfaces and classes in the com.ibm.ictx.authenticationcontext package 439

53. Identity Cache calling scenarios . 441

54. Interfaces and classes in the com.ibm.ictx.authenticationcontext package 442

55. Remote authorization ResponseCodes . 451

56. Remote authorization MajorCodes . 451

57. Remote authorization MinorCodes . 453

58. Remote auditing ResponseCodes . 456

59. Remote auditing MajorCodes . 457

60. Remote auditing MinorCodes . 458

61. Remote audit event codes . 460

62. Remote audit event code qualifiers . 461

63. Event-specific fields for remote audit events . 461

x z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Figures

 1. Overview of an EIM implementation . 7

 2. EIM domain and the data that is stored within the domain 9

 3. The relationship between the EIM identifier for a real person, John Day, and his various user

identities. 11

 4. The relationship between the EIM identifier that represents the printer server function, and the

various identities for that function. . 12

 5. Aliases for the two EIM identifiers based on the shared proper name, John S. Day. 13

 6. EIM registry definitions for five real-world user registries 15

 7. EIM registry definitions for both the RACF user registry and for a subset of the RACF registry 17

 8. EIM target and source associations for the EIM identifier John Day 20

 9. EIM administrative associations for the EIM identifier, John Day 21

10. EIM lookup operation general processing flow chart 27

11. EIM lookup operation based on the known user identity johnday 29

12. EIM configurations involving z/OS . 52

© Copyright IBM Corp. 2002, 2008 xi

xii z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

About this document

This document supports z/OS® (5694-A01). This document contains information

about using Enterprise Identity Mapping (EIM). EIM is an architecture that serves as

a security technology to make it easier to manage users in a cross-platform

environment. For a detailed introduction of EIM, see Chapter 1, “Enterprise Identity

Mapping (EIM),” on page 3.

Who should use this document

EIM requires a Lightweight Directory Access Protocol (LDAP) server because EIM

data is stored in LDAP. (For information about LDAP requirements, see “Planning

considerations for an EIM domain controller” on page 46.) EIM optionally requires

RACF® or an equivalent external security manager.

Those who might find this document helpful include the following:

v EIM administrators who plan, install, configure, customize, administer, or use EIM

v RACF administrators who issue commands in support of EIM

v Application programmers

v LDAP administrators who install, configure, or administer LDAP in support of EIM

(See “Team members” on page 37 for a complete list of team members.)

This document assumes that you are familiar with the following concepts and

protocols:

v LDAP

v z/OS UNIX® System Services shell

v C/C++ programming languages

How to use this document

For a detailed introduction of EIM, see Chapter 1, “Enterprise Identity Mapping

(EIM),” on page 3.

Where to find more information

Where necessary, this book refers to information in other books. For complete titles

and order numbers for all elements of z/OS, see z/OS Information Roadmap.

Softcopy publications

The Security Server library is available on the following CD-ROM, DVD, and online

library collections. The collections include the IBM® Sofctcopy Reader, which is a

program that enables you to view the softcopy documents.

SK3T-4269 z/OS Version 1 Release 10 Collection

 This collection contains the set of unlicensed documents for the

current release of z/OS in both BookManager® and Portable

Document Format (PDF) files. You can view or print the PDF files

with the Adobe® Acrobat reader.

SK3T-4272 z/OS Security Server RACF Collection

© Copyright IBM Corp. 2002, 2008 xiii

This softcopy collection kit contains the z/OS Security Server library

in both BookManager and Portable Document Format (PDF) files.

You can view or print the PDF files with the Adobe Acrobat reader.

SK3T-4271 z/OS Version 1 Release 10 and Software Products DVD Collection

 This DVD collection contains libraries for a single release of z/OS,

plus libraries for multiple releases of related software products that

run on z/OS. It also includes selected IBM Redbooks®. The

documents are provided in both BookManager and PDF formats

when available.

Other sources of information

IBM provides customer-accessible discussion areas where EIM and RACF may be

discussed by customer and IBM participants. Other information is also available

through the Internet.

Internet sources

EIM is a cross-platform infrastructure that is available on the following platforms:

v iSeries

v pSeries

v xSeries

v zSeries

The following resources are available through the Internet to provide additional

information about EIM and other security-related topics:

v EIM home page

Visit the EIM Web page:

www.ibm.com/servers/eserver/security/eim

v Online library

To view and print online versions of the z/OS publications, use this address:

http://www.ibm.com/systems/z/os/zos/bkserv/

v Redbooks

The Redbooks that are produced by the International Technical Support

Organization (ITSO) are available at the following address:

http://www.redbooks.ibm.com

v Enterprise systems security

For more information about security on the S/390® platform, OS/390®, and z/OS,

including the elements that comprise the Security Server, use this address:

http://www.ibm.com/systems/z/advantages/security/

v RACF home page

You can visit the RACF home page on the World Wide Web using this address:

http://www.ibm.com/servers/eserver/zseries/zos/racf/

v RACF-L discussion list

Customers and IBM participants can also discuss RACF on the RACF-L

discussion list. RACF-L is not operated or sponsored by IBM. It is run by the

University of Georgia.

To subscribe to the RACF-L discussion and receive postings, send a note to:

listserv@listserv.uga.edu

Preface

xiv z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

http://www.ibm.com/systems/z/advantages/security/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/redbooks
http://www.ibm.com/systems/z/advantages/security/
http://www.ibm.com/servers/eserver/zseries/zos/racf/

Include the following line in the body of the note, substituting your first name and

last name as indicated:

subscribe racf-l first_name last_name

To post a question or response to RACF-L, send a note, including an appropriate

Subject: line, to:

racf-l@listserv.uga.edu

v Sample code

You can get sample code, internally-developed tools, and exits to help you use

RACF. This code works in IBM’s test environment, at the time we make it

available, but is not officially supported. Each tool or sample has a README file

that describes the tool or sample and any restrictions on its use.

To access this code from a Web browser, go to the RACF home page and select

the “Downloads” topic from the navigation bar, or go to ftp://ftp.software.ibm.com/
eserver/zseries/zos/racf/.

The code is also available from ftp.software.ibm.com through anonymous FTP.

To get access:

1. Log in as user anonymous.

2. Change the directory, as follows, to find the subdirectories that contain the

sample code or tool you want to download:

cd eserver/zseries/zos/racf/

An announcement is posted on RACF-L, MVSRACF, and SECURITY CFORUM

whenever function is added.

Note: Some Web browsers and some FTP clients (especially those using a

graphical interface) might have problems using ftp.software.ibm.com

because of inconsistencies in the way they implement the FTP protocols.

If you have problems, you can try the following:

– Try to get access by using a Web browser and the links from the

RACF home page.

– Use a different FTP client. If necessary, use a client that is based on

command line interfaces instead of graphical interfaces.

– If your FTP client has configuration parameters for the type of remote

system, configure it as UNIX instead of MVS™.

Restrictions

Because the sample code and tools are not officially supported,

– There are no guaranteed enhancements.

– No APARs can be accepted.

To request copies of IBM publications

Direct your request for copies of any IBM publication to your IBM representative or

to the IBM branch office serving your locality.

There is also a toll-free customer support number (1-800-879-2755) available

Monday through Friday from 8:30 a.m. through 5:00 p.m. Eastern Time. You can

use this number to:

v Order or inquire about IBM publications

v Resolve any software manufacturing or delivery concerns

Preface

About this document xv

http://www.ibm.com/servers/eserver/zseries/zos/racf/
http://www.ibm.com/servers/eserver/zseries/zos/racf/goodies.html
http://www.ibm.com/servers/eserver/zseries/zos/racf/goodies.html
http://www.ibm.com/servers/eserver/zseries/zos/racf/

v Activate the program reorder form to provide faster and more convenient ordering

of software updates

Preface

xvi z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Summary of changes

Summary of changes

for SA22–7875–07

z/OS Version 1 Release 10

This document contains information previously presented in z/OS Integrated

Security Services Enterprise Identity Mapping (EIM) Guide and Reference,

SA22-7875-06, which supports z/OS Version 1 Release 8. The following

summarizes the changes to that information.

Updated information

This release of EIM updates the following information:

v “Configuring the IBM Tivoli Directory Server for remote services support” on page

432 updated to show new content of section in the Tivoli® Directory Server

SLAPDCNF configuration file to enable ICTX extended operations.

v “Remote authorization requests” on page 449 updated to include information on

RACF group authorization requests.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

Summary of changes

for SA22–7875–06

z/OS Version 1 Release 8

This document contains information previously presented in z/OS Integrated

Security Services Enterprise Identity Mapping (EIM) Guide and Reference,

SA22-7875-05, which supports z/OS Version 1 Release 7. The following

summarizes the changes to that information.

New information

This release of EIM introduces the following:

v A new section, "Remote Services" has been added.

v New chapters detailing working with identity cache and remote authorization and

auditing have been added to this new section. See Chapter 13, “The z/OS

Identity Cache,” on page 423, Chapter 14, “ICTX Java API,” on page 431, and

Chapter 15, “Accessing RACF remotely to perform authorization checks and

create audit records,” on page 447 for more details.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

Summary of changes

for SA22–7875–05

z/OS Version 1 Release 7

This document contains information previously presented in z/OS Integrated

Security Services Enterprise Identity Mapping (EIM) Guide and Reference,

© Copyright IBM Corp. 2002, 2008 xvii

SA22-7875-04, which supports z/OS Version 1 Release 7. The following

summarizes the changes to that information.

Updated information

This release of EIM updates the following information:

v More detailed explanations of working with audit records.

v A thorough description of working with the tabular output created by the SMF

Unload utility.

See “Working with audit records” on page 142 for these updates.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

Summary of changes

for SA22–7875–04

z/OS Version 1 Release 7

This document contains information previously presented in z/OS Integrated

Security Services Enterprise Identity Mapping (EIM) Guide and Reference,

SA22-7875-02, which supports z/OS Version 1 Release 6. The following

summarizes the changes to that information.

New information

This release of EIM introduces the following:

v Auditing support for EIM events. For more details, see Chapter 10, “EIM

Auditing,” on page 137.

v The addition of Java™ APIs, which make EIM available to z/OS applications and

servers written in Java. For more details see “Java APIs” on page 159.

Updated information

This release of EIM updates the following information:

v Chapter 9, “The eimadmin utility,” on page 109 has been updated to include the

-U flag.

v The APF authorization requirement has been removed from EIM APIs. This

important change requires a modification to your existing programs if you’re

migrating from a previous release of z/OS. For more details, see “Preparing to

run an EIM application” on page 80.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

Summary of changes

for SA22–7875–03

z/OS Version 1 Release 7

This document contains information previously presented in z/OS Integrated

Security Services Enterprise Identity Mapping (EIM) Guide and Reference,

SA22-7875-02, which supports z/OS Version 1 Release 6. The following

summarizes the changes to that information.

xviii z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

New information

This release of EIM introduces the following:

v Auditing support for EIM events. For more details, see Chapter 10, “EIM

Auditing,” on page 137.

v The addition of Java APIs, which make EIM available to z/OS applications and

servers written in Java. For more details see “Java APIs” on page 159.

Updated information

This release of EIM updates the following information:

v Chapter 9, “The eimadmin utility,” on page 109 has been updated to include the

-U flag.

v The APF authorization requirement has been removed from EIM APIs. This

important change requires a modification to your existing programs if you’re

migrating from a previous release of z/OS. For more details, see “Preparing to

run an EIM application” on page 80.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

 This document contains terminology, maintenance, and editorial changes, including

changes to improve consistency and retrievability.

Summary of changes

for SA22–7875–02

z/OS Version 1 Release 6

This document contains information previously presented in z/OS Security Server

Enterprise Identity Mapping (EIM) Guide and Reference, SA22-7875-01, which

supports z/OS Version 1 Release 5. The following summarizes the changes to that

information.

New information

This release of EIM introduces the following:

v The use of policies, which are default mappings for registries and an EIM domain

v New APIs to support the use of policies

v Support for X.509 certificate registries

Updated information

This release of EIM updates the following information:

v The conceptual information in Chapters 1 and 2, including artwork, has been

updated to support policies information

v The eimadmin utility chapter has been updated

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

 This document contains terminology, maintenance, and editorial changes, including

changes to improve consistency and retrievability.

Summary of changes xix

Summary of changes

for SA22-7875-01

z/OS Version 1 Release 5

 This document contains information previously presented in z/OS Security Server

Enterprise Identity Mapping (EIM) Guide and Reference, SA22-7875-00, which

supports z/OS Version 1 Release 4.The following summarizes the changes to that

information.

New information

v Additional bind mechanism support was added to allow applications and

administrators to bind to LDAP with a Kerberos credential or digital certificate. In

addition, CRAM-MD5 password protection is now supported for simple bind

credentials.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

 This document contains terminology, maintenance, and editorial changes, including

changes to improve consistency and retrievability.

xx z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Part 1. EIM concepts and use

© Copyright IBM Corp. 2002, 2008 1

2 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Chapter 1. Enterprise Identity Mapping (EIM)

Today’s network environments are made up of a complex group of systems and

applications, resulting in the need to manage multiple user registries. Dealing with

multiple user registries quickly grows into a large administrative problem that affects

users, administrators, and application developers. Consequently, many companies

are struggling to securely manage authentication and authorization for systems and

applications. Enterprise Identity Mapping (EIM) is an IBM eserver infrastructure

technology that allows administrators and application developers to address this

problem more easily and inexpensively than previously possible.

The following information describes the problems, outlines current industry

approaches, and explains why the EIM approach is better.

The problem: Managing multiple user registries

Many administrators manage networks that include different systems and servers,

each with a unique way of managing users through various user registries. In these

complex networks, administrators are responsible for managing each user’s

identities and passwords across multiple systems. Additionally, administrators often

must synchronize these identities and passwords and users are burdened with

remembering multiple identities and passwords and with keeping them in sync. The

user and administrator overhead in this environment is excessive. Consequently,

administrators often spend valuable time troubleshooting failed logon attempts and

resetting forgotten passwords instead of managing the enterprise.

The problem of managing multiple user registries also affects application developers

who want to provide multiple-tier or heterogeneous applications. These developers

understand that customers have important business data spread across many

different types of systems, with each system possessing its own user registries.

Consequently, developers must create proprietary user registries and associated

security semantics for their applications. Although this solves the problem for the

application developer, it increases the overhead for users and administrators.

Current approaches

Several current industry approaches for solving the problem of managing multiple

user registries are available, but they all provide incomplete solutions. For example,

Lightweight Directory Access Protocol (LDAP) provides a distributed user registry

solution. However, using LDAP (or other popular solutions such as Microsoft®

Passport) means that administrators must manage yet another user registry and set

of security semantics or must replace existing applications that are built to use

those registries.

Using this type of solution, administrators must manage multiple security

mechanisms for individual resources, thereby increasing administrative overhead

and potentially increasing the likelihood of security exposures. When multiple

mechanisms support a single resource, the chance of changing the authority

through one mechanism and forgetting to change the authority for one or more of

the other mechanisms is much higher. For example, a security exposure can result

when a user is appropriately denied access through one interface, but allowed

access through one or more other interfaces.

After completing this work, administrators find that they have not completely solved

the problem. Generally, enterprises have invested too much money in current user

© Copyright IBM Corp. 2002, 2008 3

registries and in their associated security semantics to make using this type of

solution practical. Creating another user registry and associated security semantics

solves the problem for the application provider, but not the problems for users or

administrators.

One other possible solution is to use a single sign-on approach. Several products

are available that allow administrators to manage files that contain all of a user’s

identities and passwords. However, this approach has several weaknesses:

v It addresses only one of the problems that users face. Although it allows users to

sign on to multiple systems by supplying one identity and password, it does not

eliminate the need for the user to have passwords on other systems, or the need

to manage these passwords.

v It introduces a new problem by creating a security exposure because clear-text

or decryptable passwords are stored in these files. Passwords should never be

stored in in clear-text files or be easily accessible by anyone, including

administrators.

v It does not solve the problems of third-party application developers who provide

heterogeneous, multiple-tier applications. They must still provide proprietary user

registries for their applications.

Despite these weaknesses, some enterprises have chosen to adopt these

approaches because they provide some relief for the multiple user registry

problems.

The EIM approach

EIM offers a new approach to enable inexpensive solutions to easily manage

multiple user registries and user identities in an enterprise. EIM is an architecture

for describing the relationships between individuals or entities (like file servers and

print servers) in the enterprise and the many identities that represent them within an

enterprise. In addition, EIM provides a set of APIs that allow applications to ask

questions about these relationships.

For example, given a person’s user identity in one user registry, you can determine

which user identity in another user registry represents that same person. If the user

has authenticated with one user identity and you can map that user identity to the

appropriate identity in another user registry, the user does not need to provide

credentials for authentication again. You know who the user is and only need to

know which user identity represents that user in another user registry. Therefore,

EIM provides a generalized identity mapping function for the enterprise.

EIM allows one-to-many mappings (in other words, a single user with more than

one user identity in a single user registry). However, the administrator does not

need to have specific individual mappings for all user identities in a user registry.

EIM also allows many-to-one mappings (in other words, multiple users mapped to a

single user identity in a single user registry).

The ability to map between a user’s identities in different user registries provides

many benefits. Primarily, it means that applications may have the flexibility of using

one user registry for authentication while using an entirely different user registry for

authorization. For example, an administrator could map an SAP identity (or better

yet, SAP could do the mapping itself) to access SAP resources.

The use of identity mapping requires that administrators do the following:

1. Create EIM identifiers that represent people or entities in their enterprise

Introducing EIM

4 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

2. Create EIM registry definitions that describe the existing user registries in their

enterprise

3. Define the relationship between the user identities in those registries to the EIM

identifiers that they created

4. Create policy associations

No code changes are required to existing user registries. The administrator does

not need to have mappings for all identities in a user registry. EIM allows

one-to-many mappings (in other words, a single user with more than one user

identity in a single user registry). EIM also allows many-to-one mappings (in other

words, multiple users sharing a single user identity in a single user registry, which

although supported is not advised). An administrator can represent any user registry

of any type in EIM.

EIM is an open architecture that administrators may use to represent identity

mapping relationships for any registry. It does not require copying existing data to a

new repository and trying to keep both copies synchronized. The only new data that

EIM introduces is the relationship information. Administrators manage this data in

an LDAP directory, which provides the flexibility of managing the data in one place

and having replicas wherever the information is used. Ultimately, EIM gives

enterprises and application developers the flexibility to easily work in a wider range

of environments with less cost than would be possible without this support.

Introducing EIM

Chapter 1. Enterprise Identity Mapping (EIM) 5

6 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Chapter 2. EIM concepts

A conceptual understanding of how Enterprise Identity Mapping (EIM) works is

necessary to fully understand how you can use EIM in your enterprise. Although the

configuration and implementation of EIM APIs can differ among server platforms,

EIM concepts are common across IBM eServer™ servers.

The following figure provides an EIM implementation example in an enterprise.

Three servers act as EIM clients and contain EIM-enabled applications that request

EIM data using lookup operations. The domain controller stores information about

the EIM domain, which includes an EIM identifier, associations between these EIM

identifiers and user identities, and EIM registry definitions.

Review the following information to learn more about these EIM concepts:

v “EIM domain controller” on page 8

v “EIM domain” on page 8

v “EIM identifier” on page 10

v “EIM registry definition” on page 13

v “EIM associations” on page 17

v “EIM lookup operation” on page 25

v “EIM access control” on page 30

Figure 1. Overview of an EIM implementation. This shows a typical EIM implementation.

© Copyright IBM Corp. 2002, 2008 7

EIM domain controller

The EIM domain controller is a Lightweight Directory Access Protocol (LDAP) server

that is configured to manage at least one EIM domain. There are two types of z/OS

LDAP servers — the Integrated Security Services LDAP server (ISS LDAP server)

and the IBM Tivoli Directory Server LDAP server (IBM TDS LDAP server).

An EIM domain is an LDAP directory that consists of all the EIM identifiers, EIM

associations, and user registries that are defined in that domain. Systems (EIM

clients) participate in the EIM domain by using the domain data for EIM lookup

operations. A minimum of one EIM domain controller must exist in the enterprise.

Currently, you can configure some IBM platforms to act as an EIM domain

controller. Any system that supports the EIM APIs can participate as a client in the

domain. These client systems use EIM APIs to contact an EIM domain controller to

perform EIM lookup operations. Refer to “EIM lookup operation” on page 25 for

more information.

The location of the EIM client determines whether the EIM domain controller is a

local or remote system. The domain controller is local if the EIM client is running on

the same system as the domain controller. The domain controller is remote if the

EIM client is running on a separate system from the domain controller.

EIM domain

An EIM domain is a directory within a Lightweight Directory Access Protocol (LDAP)

server that contains EIM data for an enterprise. An EIM domain is the collection of

all the EIM identifiers, EIM associations, and user registries that are defined in that

domain. Systems (EIM clients) participate in the domain by using the domain data

for EIM lookup operations.

An EIM domain is different from a user registry. A user registry defines a set of user

identities known to and trusted by a particular instance of an operating system or

application. A user registry also contains the information needed to authenticate the

user of the identity. Additionally, a user registry often contains other attributes such

as user preferences, system privileges, or personal information for that identity.

In contrast, an EIM domain refers to user identities that are defined in user

registries. An EIM domain contains information about the relationship between

identities in various user registries (user name, registry type, and registry instance)

and the actual people or entities that these identities represent. Because EIM tracks

relationship information only, there is nothing to synchronize between user registries

and EIM.

The following figure shows the data that is stored within an EIM domain. This data

includes EIM identifiers, EIM registry definitions, and EIM associations. EIM data

defines the relationship between user identities and the people or entities that these

identities represent in an enterprise.

8 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

EIM data includes:

EIM identifier

Each EIM identifier that you create represents a person or entity (such as a

print server or a file server) within an enterprise. See “EIM identifier” on

page 10 for more information about this concept.

EIM registry definition

Each EIM registry definition that you create represents an actual user

registry (and the user identity information it contains) that exists on a

system within the enterprise. Once you define a specific user registry in

EIM, that user registry can participate in the EIM domain. You can create

two types of registry definitions, one type refers to system user registries

and the other type refers to application user registries. See “EIM registry

definition” on page 13 for more information about this concept.

EIM association

Each EIM association that you create represents the relationship between

an EIM identifier and an associated identity within an enterprise. You must

define associations so that EIM clients can use EIM APIs to perform

successful EIM lookup operations. These EIM lookup operations search an

EIM domain for defined associations between EIM identifiers and user

Figure 2. EIM domain and the data that is stored within the domain

Chapter 2. EIM concepts 9

identities in recognized user registries. Associations provide the information

that ties an EIM identifier to a specific user identity in a specific user

registry. See “EIM lookup operation” on page 25 for more information about

this concept. There are two different types of associations that you can

create:

v Identifier associations. Identifier associations allow you to define a

one-to-one relationship between user identities through an EIM identifier

defined for an individual. Each EIM identifier association that you create

represents a single, specific relationship between an EIM identifier and

an associated user identity within an enterprise. Identifier associations

provide the information that ties an EIM identifier to a specific user

identity in a specific user registry and allow you to create one-to-one

identity mapping for a user. Identity associations are especially useful

when individuals have user identities with special authorities and other

privileges that you want to specifically control by creating one-to-one

mappings between their user identities.

v Policy associations. Policy associations allow you to define a

relationship between a group of user identities in one or more user

registries and an individual user identity in another user registry. Each

EIM policy association that you create results in a many-to-one mapping

between the source group of user identities in one user registry and a

single target user identity. Typically, you create policy associations to

map a group of users who all require the same level of authorization to a

single user identity with that level of authorization.

Once you create your EIM identifiers, registry definitions, and associations, you can

begin using EIM to more easily organize and work with user identities within your

enterprise.

EIM identifier

An EIM identifier represents a person or entity in an enterprise. A typical network

consists of various hardware platforms and applications and their associated user

registries. Most platforms and many applications use platform-specific or

application-specific user registries. These user registries contain all of the user

identification information for users who work with those servers or applications.

When you create an EIM identifier and associate it with the various user identities

for a person or entity, it becomes easier to build heterogeneous, multiple-tier

applications (for example, a single sign-on environment). When you create an EIM

identifier and associations, it also becomes easier to build and use tools that

simplify the administration involved with managing every user identity that a person

or entity has within the enterprise.

EIM identifier representing a person

The following figure shows an example of an EIM identifier that represents a person

named John Day and his various user identities in an enterprise. In this example,

the person John Day has four user identities in four different user registries, which

are johnday, jsd1, JOHND, and JDay.

10 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

In EIM, you can create associations that define the relationships between the John

Day identifier and each of the different user identities for John Day. By creating

these associations to define these relationships, you and others can write

applications that use the EIM APIs to look up a needed, but unknown, user identity

based on a known user identity.

EIM identifier representing an entity

In addition to representing users, EIM identifiers can represent entities within your

enterprise as Figure 4 illustrates. For example, often the print server function in an

enterprise runs on multiple systems. In the following example, there are three print

servers in the enterprise running on three different systems under three different

user identities of pserverID1, pserverID2, and pserverID3.

Figure 3. The relationship between the EIM identifier for a real person, John Day, and his

various user identities.

Chapter 2. EIM concepts 11

With EIM, you can create a single identifier that represents the print server function

within the entire enterprise. In this example, the EIM identifier print server function

represents the actual print server function entity in the enterprise. Associations are

created to define the relationships between the EIM identifier (print server function)

and each of the user identities for this function (pserverID1, pserverID2, and

pserverID3). These associations allow application developers to use EIM lookup

operations to find a specific print server function. Application providers can then

write distributed applications that manage the print server function more easily

across the enterprise.

EIM identifiers and aliasing

You can also create aliases for EIM identifiers. Aliases can aid in locating a specific

EIM identifier when performing an EIM lookup operation. For example, aliases can

be useful in situations where someone’s legal name is different from the name that

that person is known as.

EIM identifier names must be unique within an EIM domain. Aliases can help

address situations where using unique identifier names can be difficult. For

example, different individuals within an enterprise can share the same name, which

can be confusing if you are using proper names as EIM identifiers.

The following figure illustrates an example in which an enterprise has two users

named John S. Day. The EIM administrator creates two different EIM identifiers to

distinguish between them: John S Day1 and John S. Day2. However, which real

John S. Day is represented by each of these identifiers is not readily apparent.

Figure 4. The relationship between the EIM identifier that represents the printer server

function, and the various identities for that function.

12 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

By using aliases, the EIM administrator can provide additional information about the

individual for each EIM identifier. This information can also be used in an EIM

lookup operation to distinguish between the users that the identifier represents. For

example, the alias for John S. Day1 might be John Samuel Day and the alias for

John S. Day2 might be John Steven Day.

Each EIM identifier can have multiple aliases to identify which John S. Day the EIM

identifier represents. The EIM administrator might add another alias to each of the

EIM identifiers for the two individuals to further distinguish between them. For

example, the additional aliases might contain each user’s employee number,

department number, job title, or other distinguishing attribute.

You can use the alias information to aid in locating a specific EIM identifier. For

example, an application that uses EIM may specify an alias that it uses to find the

appropriate EIM identifier for the application. An administrator can add this alias to

an EIM identifier so that the application can use the alias rather than the unique

identifier name for EIM operations. An application can specify this information when

using the Get EIM Target Identities from the Identifier (eimGetTargetFromIdentifier)

API to perform an EIM lookup operation to find the appropriate user identity it

needs.

EIM registry definition

An EIM registry definition represents an actual user registry that exists on a system

within the enterprise. A user registry operates like a directory and contains a list of

valid user identities for a particular system or application. A basic user registry

contains user identities and their passwords. One example of a user registry is the

z/OS Security Server Resource Access Control Facility (RACF) registry. User

registries can contain other information as well. For example, a Lightweight

Directory Access Protocol (LDAP) directory contains bind distinguished names,

passwords, and access controls to data that is stored in LDAP. Other examples of

common user registries are a Kerberos key distribution center (KDC) and the

OS/400® user profiles registry.

You can also define user registries that exist within other user registries. Some

applications use a subset of user identities within a single instance of a user

registry. For example, the z/OS Security Server (RACF) registry can contain specific

Figure 5. Aliases for the two EIM identifiers based on the shared proper name, John S. Day.

Chapter 2. EIM concepts 13

user registries that are a subset of users within the overall RACF user registry. To

model this behavior, EIM allows administrators to create two kinds of EIM registry

definitions:

v System registry definitions

v Application registry definitions

EIM registry definitions provide information regarding those user registries in an

enterprise. The administrator defines these registries to EIM by providing the

following information:

v A unique, arbitrary EIM registry name

v The type of user registry

Each registry definition represents a specific instance of a user registry.

Consequently, you should choose an EIM registry definition name that helps you to

identify the particular instance of the user registry. For example, you could choose

the TCP/IP host name for a system user registry, or the host name combined with

the name of the application for an application user registry. You can use any

combination of alphanumeric characters, mixed case, and spaces to create unique

EIM registry definition names.

There are a number of predefined user registry types that EIM provides to cover

most operating system user registries. These include:

v AIX®

v Domino - long name

v Domino - short name

v Kerberos

v Kerberos - case sensitive

v LDAP

v Linux®

v Policy director

v Novell Directory Server

v OS/400

v Tivoli Access Manager

v RACF

v Windows® - local

v Windows domain (Kerberos)

v X.509

Note: Although the predefined registry definition types cover most operating system

user registries, you may need to create a registry definition for which EIM

does not include a predefined registry type. You have two options in this

situation. You can either use an existing registry definition which matches the

characteristics of your user registry or you can define a private user registry

type. For example in the following figure, the administrator followed the

process required and defined the type of registry as WebSphere® Third-Party

Authentication (LTPA) for the System_A_WAS application registry definition.

In the following figure, the administrator creates EIM registry definitions for user

registries representing System A, System B, and System C and a Windows Active

Directory that contains users’ Kerberos principals with which users log into their

desk top workstations. In addition, the administrator created an application registry

14 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

definition for WebSphere Lightweight Third-Party Authentication (LTPA), which runs

on System A. The registry definition name that the administrator uses helps to

identify the specific occurrence of the type of user registry. For example, an IP

address or host name is often sufficient for many types of user registries. In this

example, the administrator identifies the specific user registry instance by using

System_A_WAS as the registry definition name to identify this specific instance of the

WebSphere LTPA application. In addition to the name, the administrator also

provides the type of registry as System_A.

 You can also define user registries that exist within other user registries. For

example, the z/OS Security Server (RACF) registry can contain specific user

registries that are a subset of users within the overall RACF user registry. For a

more detailed example of how this works, see “System and application registry

definitions” on page 16.

EIM registry definitions and aliasing

You can also create aliases for EIM registry definitions. You can use predefined

alias types or you can define your own alias types to use. The predefined alias

types include:

v Domain Name System (DNS) host name

v Kerberos realm

v Issuer distinguished name (DN)

v Root distinguished name (DN)

v TCP/IP address

v LDAP DNS host name

v Other

Figure 6. EIM registry definitions for five real-world user registries

Chapter 2. EIM concepts 15

An alias does not have to be in a specific format. You can enter a value of your

own choosing for the type. For example, an application might specify that the

administrator assign an alias with an alias type of appl and alias name of source

registry. The application can then use the eimGetRegistryNameFromAlias() API

and specify the alias type and name for the API to retrieve the user registry the

application needs.

This alias support allows programmers to write applications without having to know

in advance the arbitrary EIM registry name chosen by the administrator who

deploys the application. Application documentation can provide the EIM

administrator with the alias name and type that the application uses. Using this

information, the EIM administrator can assign this alias name to the EIM registry

definition that represents the actual user registry that the administrator wants the

application to use.

When the administrator adds the alias to the EIM registry definition, the application

can perform an alias lookup to find the EIM registry name at initialization. The alias

lookup allows the application to determine the EIM registry name or names to use

as input to the APIs that perform a lookup operation, as discussed in “EIM lookup

operation” on page 25.

For example, an application that is written to use EIM may specify either a source

registry alias or a target registry alias, or aliases for both. When you assign these

aliases to the appropriate registry definitions, the application can perform an alias

lookup to find the EIM registry definition or definitions that match the aliases in the

application. This alias lookup ensures that the application uses the user registry or

user registries that the administrator wants it to use. Based on application

requirements, an administrator can assign multiple aliases to a single registry

definition.

System and application registry definitions

Some applications use a subset of user identities within a single instance of a user

registry. EIM allows administrators to model this scenario by providing two kinds of

EIM registry definitions, system and application.

A system registry definition represents a distinct registry within a workstation or

server. You can create a system registry definition when the registry in the

enterprise has one of the following traits:

v The registry is provided by an operating system, such as AIX, OS/400, or a

security management product such as z/OS Security Server Resource Access

Control Facility (RACF).

v The registry contains user identities that are unique to a specific application, such

as Lotus Notes.

v The registry contains distributed user identities, such as Kerberos principals or

Lightweight Directory Access Protocol (LDAP) distinguished names.

An application registry definition is an entry in EIM that you create to describe and

represent a subset of user identities that are defined in a system registry. These

user identities share a common set of attributes or characteristics that allow them to

use a particular application or set of applications. Application registry definitions

represent user registries that exist within other user registries. For example, the

z/OS Security Server (RACF) registry can contain specific user registries that are a

subset of users within the overall RACF user registry. Because the of this

relationship, you must specify the name of the parent system registry for any

16 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

application registry definition that you create. You can create an application registry

definition when the user identities have the following traits:

v The user identities for the application or set of applications are not stored in a

user registry specific to the application or set of applications.

v The user identities for the application or set of applications are stored in a

system registry that contains user identities for other applications.

EIM lookup operations perform correctly regardless of whether an EIM administrator

defines a registry either as system or application. However, separate registry

definitions allow mapping data to be managed on an application basis. The

responsibility of managing application-specific mappings can be assigned to an

administrator for a specific registry.

For example, the following figure shows how an EIM administrator created a system

registry definition to represent a z/OS Security Server RACF registry. The

administrator also created an application registry definition to represent the user

identities within the RACF registry that use z/OS UNIX System Services (z/OS

UNIX). System C contains a RACF user registry that contains information for three

user identities, DAY1, ANN1, and SMITH1. Two of these user identities (DAY1 and

SMITH1) access z/OS UNIX on System C. These user identities are actually RACF

users with unique attributes that identify them as z/OS UNIX users. Within the EIM

registry definitions, the EIM administrator defined System_C_RACF to represent the

overall RACF user registry. The administrator also defined System_C_UNIX to

represent the user identities that have z/OS UNIX attributes.

EIM associations

An EIM association is an entry that you create in an EIM domain to define a

relationship between user identities in different user registries. The type of

association that you create determines whether the defined relationship is direct or

indirect. You can create one of two types of associations in EIM: identifier

associations and policy associations. You can use policy associations instead of, or

in combination with, identifier associations. How you use associations depends on

your overall EIM implementation plan.

Figure 7. EIM registry definitions for both the RACF user registry and for a subset of the

RACF registry

Chapter 2. EIM concepts 17

Identifier associations

An EIM identifier represents a specific person or entity in the enterprise. An EIM

identifier association describes a relationship between an EIM identifier and a single

user identity in a user registry that also represents that person. When you create

associations between an EIM identifier and all of a person’s or entity’s user

identities, you provide a single, complete understanding of how that person or entity

uses the resources in an enterprise

User identities can be used for authentication, authorization, or both. Authentication

is the process of verifying that an entity or person who provides a user identity has

the right to assume that identity. Verification is often accomplished by forcing the

person who submits the user identity to provide secret or private information

associated with the user identity, such as a password. Authorization is the process

of ensuring that a properly authenticated user identity can only perform functions or

access resources for which the identity has been given privileges. In the past,

nearly all applications were forced to use the identities in a single user registry for

both authentication and authorization. By using EIM lookup operations, applications

now can use the identities in one user registry for authentication while they use

associated user identities in a different user registry for authorization. Refer to “EIM

lookup operation” on page 25 for more information.

An EIM association is a relationship between an EIM identifier that represents a

specific person and a single user identity in a user registry that also represents that

person. When you create associations between an EIM identifier and all of a

person’s or entity’s user identities, you provide a single, complete understanding of

how that person or entity uses the resources in an enterprise. EIM provides APIs

that allow applications to find an unknown user identity in a specific (target) user

registry by providing a known user identity in some other (source) user registry. This

process is called identity mapping.

In EIM, an administrator can define three different types of associations to describe

the relationship between an EIM identifier and a user identity. Identifier associations

can be any of the following types: source, target, or administrative. The type of

association that you create is based on how the user identity is used. For example,

you create source and target associations for those user identities that you want to

participate in mapping lookup operations. Typically, if a user identity is used for

authentication, you create a source association for it. You then create target

associations for those user identities that are used for authorization.

Before you can create an association, you first must create the appropriate EIM

identifier and the appropriate EIM registry definition for the user registry that

contains the associated user identity. An association defines a relationship between

an EIM identifier and a user identity by using the following information:

v EIM identifier name

v User identity name

v EIM registry definition name

v Association type

v Lookup information to further identity the target user identity in a target

association (optional).

An administrator can create different types of associations between an EIM

identifier and a user identity based on how the user identity is used. User identities

can be used for authentication, authorization, or both.

18 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Source and target association relationship

In EIM, there are three types of associations that an administrator can define

between an EIM identifier and a user identity. These types are source, target, and

administrative associations.

Source association

When a user identity is used for authentication, that user identity should

have a source association with an EIM identifier. A source association

allows the user identity to be used as the source in an EIM lookup

operation to find a different user identity that is associated with the same

EIM identifier. If a user identity with only a source association is used as the

target identity in an EIM lookup operation, no associated user identities are

returned. To ensure successful mapping lookup operations for EIM

identifiers, source and target associations must be used together for a

single EIM identifier.

Target association

When a user identity is used for authorization rather than for authentication,

that user identity should have a target association with an EIM identifier. A

target association allows the user identity to be returned as the result of an

EIM lookup operation. If a user identity with only a target association is

used as the source identity in an EIM lookup operation, no associated user

identities are returned.

 It might be necessary to create both a target and a source association for a

single user identity. This is required when an individual uses a single

system as both a client and a server or for individuals who act as

administrators. For example, a user normally authenticates to a Windows

platform and runs applications that access an AIX server. Because of the

user’s job responsibilities, the user must occasionally also log directly into

an AIX server. In this situation you would create both source and target

associations between the AIX user identity and the person’s EIM identifier.

User identities that represent end users normally need a target association

only.

To ensure successful mapping lookup operations, you need to create at

least one source and one or more target associations for a single EIM

identifier. Typically, you create a target association for each user identity in

a user registry that the person can use for authorization to the system or

application to which the user registry corresponds.

The following figure shows an example of a source and a target

association. In this example, the administrator created two associations for

the EIM identifier John Day to define the relationship between this identifier

and two associated user identities. The administrator created a source

association for johnday, the WebSphere Lightweight Third-Party

Authentication (LTPA) user identity in the System_A_WAS user registry. The

administrator also created a target association for jsd1, the OS/400 user

profile in the System B user registry. These associations provide a means

for applications to obtain an unknown user identity (the target, jsd1) based

on a known user identity (the source, johnday) as part of an EIM lookup

operation.

Chapter 2. EIM concepts 19

Administrative association

An administrative association for an EIM identifier is typically used to show

that the person or entity represented by the EIM identifier owns a user

identity that requires special considerations for a specified system. This type

of association can be used, for example, with highly sensitive user

registries.

 Due to the nature of what an administrative association represents, an EIM

lookup operation that supplies a source user identity with an administrative

association returns no results. Similarly, a user identity with an

administrative association is never returned as the result of an EIM lookup

operation.

The following figure shows an example of an administrative association. In

this example, John Day has one user identity on System A and another

user identity on System B, which is a highly secure system. The system

administrator wants to ensure that users authenticate to System B by using

only the local user registry of this system. The administrator does not want

to allow an application to authenticate John Day to the system by using

some foreign authentication mechanism. By using an administrative

association for the JDay user identity on System B, the EIM administrator

can see that John Day owns an account on System B, but EIM does not

return information about the JDay identity in EIM lookup operations. Even if

applications exist on this system that use EIM lookup operations, they

cannot find user identities that have administrative associations.

Figure 8. EIM target and source associations for the EIM identifier John Day

20 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Policy associations

EIM’s mapping policy support allows an EIM administrator to create and use policy

associations to define a relationship between multiple user identities in one or more

user registries and a single user identity in another user registry. Policy associations

use EIM mapping policy support to create many-to-one mappings between user

identities without involving an EIM identifier. You can use policy associations instead

of, or in combination with, identifier associations that provide one-to-one mappings

between an EIM identifier and a single user identity.

A policy association affects only those user identities for which specific individual

EIM associations do not exist. When specific identifier associations exist between

an EIM identifier and user identities, then the target user identity from the identifier

association is returned to the application performing the lookup operation, even

when a policy association exists and the use of policy associations is enabled.

With EIM, you can create three different types of policy associations: default

domain, default registry, and certificate filter policy associations. Because you can

use policy associations in a variety of overlapping ways, you should have a

thorough understanding of EIM mapping policy support and how lookup operations

work before you create and use policy associations.

Default domain policy associations

A default domain policy association is one type of policy association that

you can use to create many-to-one mappings between user identities. You

can use a default domain policy association to map a source set of multiple

Figure 9. EIM administrative associations for the EIM identifier, John Day

Chapter 2. EIM concepts 21

user identities (in this case, all users in the domain) to a single target user

identity in a specified target user registry. In a default domain policy

association, all users in the domain are the source of the policy association

and are mapped to a single target registry and target user identity.

 To use a default domain policy association, you must enable mapping

lookups using policy associations for the domain. You must also enable

mapping lookups for the target user registry of the policy association. When

you configure this enablement, the user registries in the policy association

can participate in mapping lookup operations.

The default domain policy association takes effect when a mapping lookup

operation is not satisfied by identifier associations, certificate filter policy

associations, or default registry policy associations for the target registry.

The result is that all user identities in the domain are mapped to the single

target user identity as specified by the default domain policy association.

For example, you create a default domain policy association with a target

user identity of John_Day in target registry Registry_xyz and you have not

created any identifier associations or other policy associations that map to

this user identity. Therefore, when Registry_xyz is specified as the target

registry in lookup operations, the default domain policy ensures that the

target user identity of John_Day is returned for all user identities in the

domain that do not have any other associations defined for them.

You specify the following to define a default domain policy association:

v Target registry. The name of an EIM registry definition which contains

the user identity to which all user identities in the domain are to be

mapped.

v Target user. The name of the user identity that is returned as the target

of an EIM mapping lookup operation based on this policy association.

You can define a default domain policy association for each registry in the

domain. If two or more domain policy associations refer to the same target

registry, you must define unique lookup information for each of these policy

associations to ensure that mapping lookup operations can distinguish

among them. Otherwise, mapping lookup operations may return multiple

target user identities. As a result of these ambiguous results, applications

that rely on EIM may not be able to determine the exact target user identity

to use.

Default registry policy associations

A default registry policy association is one type of policy association that

you can use to create many-to-one mappings between user identities. You

can use a default registry policy association to map a source set of multiple

user identities (in this case those in a single registry) to a single target user

identity in a specified target user registry. In a default registry policy

association, all users in a single registry are the source of the policy

association and are mapped to a single target registry and target user.

 To use default registry policy associations, you must enable mapping

lookups using policy associations for the domain. You must also enable

mapping lookups for the source registry and enable mapping lookups and

the use of policy associations for the target user registry of the policy

association. When you configure this enablement, the user registries in the

policy association can participate in mapping lookup operations.

The default registry policy association takes effect when a mapping lookup

operation is not satisfied by identifier associations, certificate filter policy

associations, or other default registry policy associations for the target

22 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

registry. The result is that all user identities in the source registry are

mapped to the single target user identity as specified by the default registry

policy association.

For example, you create a default registry policy association that has a

source registry of my_realm.com, which are principals in a specific Kerberos

realm. For this policy association, you also specify a target user identity of

general_user1 in target registry os/400_system_reg, which is a specific user

profile in an OS/400 user registry. In this case, you have not created any

identifier associations or policy associations that apply to any of the user

identities in the source registry. Therefore, when os/400_system_reg is

specified as the target registry and my_realm.com is specified as the source

registry in lookup operations, the default registry policy association ensures

that the target user identity of general_user1 is returned for all user

identities in my_realm.com that do not have any specific identifier

associations or certificate filter policy associations defined for them.

You specify the following to define a default registry policy association:

v Source registry. This is the registry definition that you want the policy

association to use as the source of the mapping. All the user identities in

this source user registry are to be mapped to the specified target user of

the policy association.

v Target registry. The name of an EIM registry definition. The target

registry must contain the target user identity to which all user identities in

the source registry are to be mapped.

v Target user. The name of user identity that is returned as the target of

an EIM mapping lookup operation based on this policy association.

You can define more than one default registry policy association. If two or

more policy associations with the same source registry refer to the same

target registry, you must define unique lookup information for each of these

policy associations to ensure that mapping lookup operations can

distinguish among them. Otherwise, mapping lookup operations may return

multiple target user identities. As a result of these ambiguous results,

applications that rely on EIM may not be able to determine the exact target

identity to use.

Certificate filter policy associations

A type of policy association that you can use to create many-to-one

mappings between user identities. You can use a certificate filter policy

association to map a source set of certificates to a single target user

identity in a specified target user registry.

 In a certificate filter policy association, you specify a set of certificates in a

single X.509 registry as the source of the policy association. These

certificates are mapped to a single target registry and target user that you

specify. Unlike a default registry policy association in which all users in a

single registry are the source of the policy association, the scope of a

certificate filter policy association is more flexible. You can specify a subset

of certificates in the registry as the source. The certificate filter that you

specify for the policy association is what determines its scope.

Note: When you want to map all the certificates in an X.509 user registry

to a single target user identity, create and use a default registry

policy association.

To use certificate filter policy associations, you must enable mapping

lookups using policy associations for the domain. You must also enable

Chapter 2. EIM concepts 23

mapping lookups for the source registry and enable mapping lookups and

the use of policy associations for the target user registry of the policy

association. When you configure this enablement, the user registries in the

policy association can participate in mapping lookup operations.

When a digital certificate is the source user identity in an EIM mapping

lookup operation (after the requesting application uses

eimFormatUserIdentity to format the user identity name), EIM first checks to

see if there is an identifier association between an EIM identifier and the

specified user identity. If none exist, EIM then compares the DN information

in the certificate against the DN or partial DN information specified in the

filter for the policy association. If the DN information in the certificate

satisfies the criteria of the filter, EIM returns the target user identity that the

policy association specified. The result is that certificates in the source

X.509 registry that satisfy the certificate filter criteria are mapped to the

single target user identity as specified by the certificate filter policy

association.

You specify the following information to define a certificate filter policy

association:

v Source registry. The source registry definition that you specify must be

an X.509 type user registry. The certificate filter policy creates an

association between user identities in this X.509 user registry and a

single, specific target user identity. The association is applied to only

those user identities in the registry that meet the criteria of the certificate

filter that you specify for this policy.

v Certificate filter. Defines a set of similar user certificate attributes. The

certificate filter policy association maps any certificates with these

defined attributes in the X.509 user registry to a specific target user

identity. You specify the filter based on a combination of the Subject

distinguished name (SDN) and the Issuer distinguished name (IDN) that

matches the certificates that you want to use as the source of the

mapping. The certificate filter that you specify for the policy must already

exist in the EIM domain.

v Target registry. The target registry definition that you specify is the user

registry that contains the user identity to which you want to map the

certificates that match the certificate filter.

v Target user. The target user is the name of the user identity that is

returned as the target of an EIM mapping lookup operation based on this

policy association.

Lookup information

You can provide optional data called lookup information to further identify a target

user identity. This target user identity can be specified either in an identifier

association or in a policy association. Lookup information is a unique character

string that either the eimGetTargetFromSource API or the

eimGetTargetFromIdentifier API can use during a mapping lookup operation to

further refine the search for the target user identity that is the object of the

operation. Data that you specify for lookup information corresponds to the registry

users additional information parameter for these APIs.

Lookup information is necessary only when a mapping lookup operation can return

more than one target user identity. A mapping lookup operation can return multiple

target user identities when one or more of the following situations exist:

24 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

v An EIM identifier has multiple individual target associations to the same target

registry.

v More than one EIM identifier has the same user identity specified in a source

association and each of these EIM identifiers has a target association to the

same target registry, although the user identity specified for each target

association may be different.

v More than one default domain policy association specifies the same target

registry.

v More than one default registry policy association specifies the same source

registry and the same target registry.

v More than one certificate filter policy association specifies the same source X.509

registry, certificate filter, and target registry.

Note: A mapping lookup operation that returns more than one target user identity

can create problems for EIM-enabled applications, including OS/400

applications and products, that are not designed to handle these ambiguous

results. Consequently, you might consider redefining associations for the

domain to ensure that a mapping lookup operation can return a single target

user identity to ensure that base OS/400 applications can successfully

perform lookup operations and map identities.

You can use lookup information to avoid situations where it is possible for mapping

lookup operations to return more than one target user identity. To prevent mapping

lookup operations from returning multiple target user identities, you must define

unique lookup information for each target user identity in each association. This

lookup information must be provided to the mapping lookup operation to ensure that

the operation can return a unique target user identity. Otherwise, applications that

rely on EIM may not be able to determine the exact target identity to use.

For example, you have an EIM identifier named John Day who has two user profiles

on System A. One of these user profiles is JDUSER on System A and another is

JDSECADM, which has security administrator special authority. There are two target

association for the John Day identifier. One of these target associations is for the

JDUSER user identity in the target registry of System_A and has lookup information of

user authority specified for JDUSER. The other target association is for the JDSECADM

user identity in the target registry of System_A and has lookup information of

security officer specified for JDSECADM.

If a mapping lookup operation does not specify any lookup information, the lookup

operation returns both the JDUSER and the JDSECADM user identities. If a mapping

lookup operation specifies lookup information of user authority, the lookup operation

returns the JDUSER user identity only. If a mapping lookup operation specifies lookup

information of security officer, the lookup operation returns the JDSECADM user

identity only.

If you delete the last target association for a user identity (whether it is an identifier

association or a policy association), the target user identity and all lookup

information is deleted from the domain as well.

EIM lookup operation

An application or an operating system uses an EIM API to perform a lookup

operation so that the application or operating system can map from one user

identity in one registry to another user identity in another registry. An EIM lookup

operation is a process through which an application or operating system finds an

Chapter 2. EIM concepts 25

unknown associated user identity in a specific target registry by supplying some

known and trusted information. Applications that use EIM APIs can perform these

EIM lookup operations on information only if that information is stored in the EIM

domain. An application can perform one of two types of EIM lookup operations

based on the type of information the application supplies as the source of the EIM

lookup operation: a user identity or an EIM identifier.

When applications or operating systems use the eimGetTargetFromSource API to

obtain a target user identity for a given target registry, they must supply a user

identity as the source of the lookup operation. To be used as the source in a EIM

lookup operation, a user identity must have either an identifier source association

defined for it or be covered by a policy association. When an application or

operating system uses this API, the application or operating system must supply

these pieces of information:

v A user identity as the source, or starting point of the operation.

v The EIM registry definition name for the source user identity.

v The EIM registry definition name that is the target of the EIM lookup operation.

This registry definition describes the user registry that contains the user identity

that the application is seeking.

When applications or operating systems use the eimGetTargetFromIdentifier API to

obtain a user identity for a given target registry, they must supply an EIM identifier

as the source of the EIM lookup operation. When an application uses this API, the

application must supply the following pieces of information:

v A user identity as the source, or starting point of the operation.

v The EIM registry definition name that is the target of the EIM lookup operation.

This registry definition describes the user registry that contains the user identity

that the application is seeking.

For a user identity to be returned as the target of either type of EIM lookup

operation, the user identity must have a target association defined for it. This target

association can be in the form of an identifier association or a policy association.

The supplied information is passed to EIM and the lookup operation searches for

and returns any target user identities, by searching EIM data in the following order:

1. Identifier target association for an EIM identifier. The EIM identifier is identified

in one of two ways: It is supplied by the eimGetTargetFromIdentifier API. Or, the

EIM identifier is determined from information supplied by the

eimGetTargetFromSource API.

2. Certificate filter policy association.

3. Default registry policy association.

4. Default domain policy association.

26 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

The lookup operation search flows in this manner:

1. The lookup operation checks whether mapping lookups are enabled. The lookup

operation determines whether mapping lookups are enabled for the specified

source registry, the specified target registry, or both specified registries. If

mapping lookups are not enabled for one or both of the registries, then the

lookup operation ends without returning a target user identity

2. The lookup operation checks whether there are identifier associations that

match the lookup criteria. If an EIM identifier was provided, the lookup operation

uses the specified EIM identifier name. Otherwise, the lookup operation checks

whether there is a specific identifier source association that matches the

supplied source user identity and source registry. If there is one, the lookup

operation uses it to determine the appropriate EIM identifier name. The lookup

operation then uses the EIM identifier name to search for an identifier target

association for the EIM identifier that matches the specified target EIM registry

definition name. If there is an identifier target association that matches, the

lookup operation returns the target user identity defined in the target association

Figure 10. EIM lookup operation general processing flow chart

Chapter 2. EIM concepts 27

3. The lookup operation checks whether the use of policy associations are

enabled. The lookup operation checks whether the domain is enabled to allow

mapping lookups using policy associations. The lookup operation also checks

whether the target registry is enabled to use policy associations. If the domain is

not enabled for policy associations or the registry is not enabled for policy

associations, then the lookup operation ends without returning a target user

identity.

4. The lookup operation checks for certificate filter policy associations. The lookup

operation checks whether the source registry is an X.509 registry type. If it is an

X.509 registry type, the lookup operation checks whether there is a certificate

filter policy association that matches the source and target registry definition

names. The lookup operation checks whether there are certificates in the source

X.509 registry that satisfy the criteria specified in the certificate filter policy

association. If there is a matching policy association and there are certificates

that satisfy the certificate filter criteria, the lookup operation returns the

appropriate target user identity for that policy association.

5. The lookup operation checks for default registry policy associations. The lookup

operation checks whether there is a default registry policy association that

matches the source and target registry definition names. If there is a matching

policy association, the lookup operation returns the appropriate target user

identity for that policy association.

6. The lookup operation checks for default domain policy associations. The lookup

operation checks whether there is a default domain policy association defined

for the target registry definition. If there is a matching policy association, the

lookup operation returns the associated target user identity for that policy

association.

7. The lookup operation is unable to return any results.

When an application supplies a user identity as the source, the application also

must supply the EIM registry definition name for the source user identity and the

EIM registry definition name that is the target of the EIM lookup operation. To be

used as the source in a EIM lookup operation, a user identity must have a source

association defined for it. Refer to “EIM associations” on page 17 for more

information.

When an application supplies an EIM identifier as the source of the EIM lookup

operation, the application must also supply the EIM registry definition name that is

the target of the EIM lookup operation. For a user identity to be returned as the

target of either type of EIM lookup operation, the user identity must have a target

association defined for it.

The supplied information is passed to the EIM domain controller where all EIM

information is stored and the EIM lookup operation searches for the source

association that matches the supplied information. Based on the EIM identifier

(supplied to the API or determined from the source association information), the

EIM lookup operation then searches for a target association for that identifier that

matches the target EIM registry definition name.

In Figure 10, the user identity johnday authenticates to the Websphere Application

Server by using Lightweight Third-Party Authentication (LPTA) on System A. The

Websphere Application Server on System A calls a native program on System B to

access data on System B. The native program uses an EIM API to perform an EIM

lookup operation based on the user identity on System A as the source of the

operation. The application supplies the following information to perform the

operation: johnday as the source user identity, System_A_WAS as the source EIM

28 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

registry definition name, and System_B as the target EIM registry definition name.

This source information is passed to the EIM domain controller and the EIM lookup

operation finds a source association that matches the information. Using the EIM

identifier name, the EIM lookup operation searches for a target association for the

John Day identifier that matches the target EIM registry definition name for

System_B. When the matching target association is found, the EIM lookup operation

returns the jsd1 user identity to the application.

Mapping policy support and enablement

EIM mapping policy support allows you to use policy associations as well as

specific identifier associations in an EIM domain. You can use policy associations

instead of, or in combination with, identifier associations.

EIM mapping policy support provides a means of enabling and disabling the use of

policy associations for the entire domain, as well as for each specific target user

registry. EIM also allows you to set whether a specific registry can participate in

mapping lookup operations in general. Consequently, you can use mapping policy

support to more precisely control how mapping lookup operations return results.

The default setting for an EIM domain is that mapping lookups that use policy

associations are disabled for the domain. When the use of policy associations is

disabled for the domain, all mapping lookup operations for the domain return results

only by using specific, identifier associations between user identities and EIM

identifiers.

Figure 11. EIM lookup operation based on the known user identity johnday

Chapter 2. EIM concepts 29

The default setting for each individual registry is that mapping lookup participation is

enabled and the use of policy associations is disabled. When you enable the use of

policy associations for an individual target registry, you must also ensure that this

setting is enabled for the domain.

You can configure mapping lookup participation and the use of policy associations

for each registry in one of the following ways:

v Mapping lookup operations can not be used for the specified registry at all. In

other words, an application that performs a mapping lookup operation involving

that registry will fail to return results.

v Mapping lookup operations can use specific identifier associations between user

identities and EIM identifiers only. Mapping lookups are enabled for the registry,

but the use of policy associations is disabled for the registry.

v Mapping lookup operations can use specific identifier associations when they

exist and policy associations when specific identifier associations do not exist (all

settings are enabled).

EIM access control

An EIM user is a user who possesses EIM access control based on their

membership in a predefined Lightweight Directory Access Protocol (LDAP) user

group for a specific domain. Specifying EIM access control for a user adds that user

to a specific LDAP user group for a particular domain. Each LDAP group has

authority to perform specific EIM administrative tasks for that domain. Which and

what type of administrative tasks, including lookup operations, an EIM user can

perform is determined by the access control group to which the EIM user belongs.

EIM access controls allow a user to perform specific administrative tasks or EIM

lookup operations. Only users with EIM administrator access are allowed to grant or

revoke authorities for other users. EIM access controls are granted only to user

identities that are known to the EIM domain controller.

The following are brief descriptions of the functions that each EIM access control

group can perform:

Lightweight Directory Access Protocol (LDAP) administrator

This access control allows the user to configure a new EIM domain. A user

with this access control can perform the following functions:

v Create a domain

v Delete a domain

v Create and remove EIM identifiers

v Create and remove EIM registry definitions

v Create and remove source, target, and administrative associations

v Perform EIM lookup operations

v Retrieve associations, EIM identifiers, and EIM registry definitions

v Add, remove, and list EIM authority information

EIM administrator

This access control allows the user to manage all of the EIM data within

this EIM domain. A user with this access control can perform the following

functions:

v Delete a domain

v Create and remove EIM identifiers

30 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

v Create and remove EIM registry definitions

v Create and remove source, target, and administrative associations

v Perform EIM lookup operations

v Retrieve associations, EIM identifiers, and EIM registry definitions

v Add, remove, and list EIM authority information

EIM identifiers administrator

This access control allows the user to add and change EIM identifiers and

manage source and administrative associations. A user with this access

control can perform the following functions:

v Create an EIM identifier

v Add and remove source associations

v Add and remove administrative associations

v Perform EIM lookup operations

v Retrieve associations, EIM identifiers, and EIM registry definitions

EIM mapping lookup

This access control allows the user to conduct EIM lookup operations. A

user with this access control can perform the following functions:

v Perform EIM lookup operations

v Retrieve associations, EIM identifiers, and EIM registry definitions

EIM registries administrator

This access control allows the user to manage all EIM registry definitions. A

user with this access control can perform the following functions:

v Add and remove target associations

v Perform EIM lookup operations

v Retrieve associations, EIM identifiers, and EIM registry definitions

EIM registry X administrator

This access control allows the user to manage a specific EIM registry

definition. Membership in this access control group also allows the user to

add and remove target associations only for a specified user registry

definition. To take full advantage of mapping lookup operations and policy

associations, a user with this access control should also have EIM mapping

operations access control. This access control allows a user to:

v Create, remove, and list target associations for the specified EIM registry

definitions only

v Add and remove default domain policy associations

v Add and remove policy associations for the specified registry definitions

only

v Add certificate filters for the specified registry definitions only

v Enable and disable mapping lookups for the specified registry definitions

only

v Add and remove policy associations only for the specified registries

v Retrieve EIM identifiers

v Retrieve identifier associations and certificate filters for the specified

registry definitions only

v Add and remove target associations for the specific EIM registry

definition

v Perform EIM lookup operations

Chapter 2. EIM concepts 31

v Retrieve EIM registry definition information for the specified registry

definitions only

Each of the following tables is organized by the EIM task that the API performs.

Each table displays each EIM API, the different EIM access controls, and the

access each of these access controls has to certain EIM functions. Keep in mind

there are also Java versions of these APIs, in case you need to work with z/OS

applications written in Java. For more information on Java APIs, see “Java APIs” on

page 159.

 Table 1. Working with domains

EIM API LDAP

admin

EIM admin Identifier

admin

Identity

mapping

operations

Registry

admin

Admin for

selected

registries

eimChangeDomain X X

eimCreateDomain X

eimDeleteDomain X X

eimListDomains X X

 Table 2. Working with identifiers

EIM API LDAP

admin

EIM

admin

Identifier

admin

Identity mapping

operations

Registry

admin

Admin for

selected

registries

eimAddIdentifier X X X

eimChangeIdentifier X X X

eimListIdentifiers X X X X X X

eimRemoveIdentifier X X

eimGetAssociated Identifiers X X X X X X

 Table 3. Working with registries

EIM API LDAP

admin

EIM admin Identifier

admin

Identity

mapping

operations

Registry

admin

Admin for

selected

registries

eimAddApplicationRegistry X X

eimAddSystemRegistry X X

eimChangeRegistry X X X X

eimChangeRegistryUser X X X X

eimChangeRegistryAlias X X X X

eimGetRegistry NameFromAlias X X X X X X

eimListRegistries X X X X X X

eimListRegistryAliases X X X X X X

eimListRegistry Associations X X X X X X

eimListRegistyUsers X X X X X X

eimRemoveRegistry X X

For eimAddAssociation() and eimRemoveAssociation() APIs there are four

parameters that determine the type of association that is either being added or

removed. The authority to these APIs differs based on the type of association

specified in these parameters. In the following table, the type of association is

included for each of these APIs.

 Table 4. Working with associations

EIM API LDAP

admin

EIM

admin

Identifier

admin

Identity

mapping

operations

Registry

admin

Admin for

selected

registries

eimAddAssociation (admin) X X X

32 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 4. Working with associations (continued)

eimAddAssociation (source) X X X

eimAddAssociation (source and

target)

X X X X X

eimAddAssociation (target) X X X X

eimListAssociations X X X X X X

eimRemoveAssociation (admin) X X X

eimRemoveAssociation (source) X X X

eimRemoveAssociation (source

and target)

X X X X X

eimRemoveAssociation (target) X X X X X

 Table 5. Working with mappings

EIM API LDAP

admin

EIM

admin

Identifier

admin

Identity

mapping

operations

Registry

admin

Admin for

selected

registries

eimGetAssociated

Identifiers

X X X X X X

eimGetRegistryNameFrom Alias X X X X X X

eimGetTargetFromIdentifier X X X X X X

eimGetTargetFromSource X X X X X X

 Table 6. Working with policy associations

EIM API LDAP

admin

EIM admin Identifier

admin

Identity

mapping

opera- tions

Registry

admin

Admin for

selected

registries

eimAddPolicyAssociation X X X X

eimAddPolicyFilter X X X X

eimListPolicyFilters X X X X X X

eimRemove PolicyAssociation X X X X

eimRemovePolicyFilter

 Table 7. Working with mappings

EIM API LDAP

admin

EIM admin Identifier

admin

Identity

mapping

opera-

tions

Registry

admin

Admin for

selected

registries

eimGetAssociatedIdentifier X X X X X X

eimGetTargetFromIdentifier X X X X X X

eimGetTargetFromSource X X X X X X

 Table 8. Working with access

EIM API LDAP admin EIM admin Identifier

admin

Identity

mapping

operations

Registry

admin

Admin for

selected

registries

eimAddAccess X X

eimListAccess X X

eimListUserAccess X X

eimRemoveAccess X X

eimQueryAccess X X

Chapter 2. EIM concepts 33

34 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Chapter 3. Migration considerations

This chapter discusses migration issues. Your plan for migrating to a new level of

EIM should include information from a variety of sources. These sources of

information describe topics such as coexistence service, hardware and software

requirements, migration actions, and interface changes. This section should be

referenced early in the planning stages as you migrate from one release to another.

Migration from release to release

Migration from EIM Release 6

There are special considerations for applications that will be shared between

different releases of z/OS. Prior to z/OS V1R7, EIM application needed to be APF

authorized. For z/OS V1R7 or later, the application should not be APF authorized.

The one exception is when the application is shared between a down level system

and a z/OS V1R7 or later system. The application must remain APF authorized in

order for it to work on the down level system. For more information, see “Preparing

to run an EIM application” on page 80.

Migration from EIM Release 5 - Starting point

EIM domain controller

Before an EIM domain controller can be migrated to the next release, the LDAP

administrator must apply the enhanced schema elements to the LDAP directory.

When the EIM domain controller is the z/OS Security Server LDAP Directory

Server, you will need to migrate to z/OS Version 1 Release 6 which contains the

new schema elements.

For more information on the EIM domain controller, see “Planning considerations for

an EIM domain controller” on page 46. For more information on running EIM on

z/OS, see “Steps for installing and configuring the EIM domain controller on z/OS”

on page 49.

EIM client applications

Existing EIM lookup and administration applications work unchanged with the

enhanced domain controller. However, the new policy and certificate support are not

available to those applications. New EIM lookup applications and new

administration applications work only with the enhanced domain controller.

For more information on EIM client applications, see “Planning for EIM client

applications” on page 39.

Removal of SETROPTS EIMREGISTRY/NOEIMREGISTRY

In z/OS V1R4 and R5 the SETROPTS command was used to make an in-storage

copy of the local registry name. In z/OS V1R6, the registry name is no longer kept

in storage but retrieved once per EIM application that uses the local registry name.

The SETROPTS command is no longer needed to make the in-storage copy. For

that reason, the EIMREGISTRY/NOEIMREGISTRY keywords are no longer

available on the SETROPTS command.

© Copyright IBM Corp. 2002, 2008 35

36 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Chapter 4. Planning for EIM

This chapter provides the information you need to understand the task of

implementing EIM on your IBM server platform. This chapter also provides the

information you need to:

v Understand the task of implementing EIM

v Determine which skills are required to complete your implementation team and

create your own implementation plan

This chapter explores the following topics:

v “Identifying skill requirements”

– “Team members”

v “Planning for EIM client applications” on page 39

– “Planning for an EIM domain” on page 40

– “Planning for EIM registries” on page 40

– “Planning considerations for identifiers” on page 42

– “Planning considerations for associations” on page 43

– “Accessing the EIM domain” on page 45

v “Planning considerations for an EIM domain controller” on page 46

v “Planning EIM administration tools” on page 47

v “Customizing EIM on your operating system” on page 48

v “Task roadmap for implementing EIM” on page 48

Before you begin: The EIM administrator needs to plan carefully for the EIM

domain. Before setting up the domain, consider the following:

v What applications will refer to the EIM domain?

v On what systems will the applications run?

v Which system or application registries need to participate in the domain?

v What identifiers do you need to add?

v What associations need to be added between the identifiers and the user IDs in

the registries?

Identifying skill requirements

The implementation of EIM requires the interaction of several software products,

each with its own required skills. This means that your team can consist of people

from several different disciplines, particularly if you work with a large organization.

This section provides the information you need to determine which skills are

required to complete your implementation. These skills are presented as job titles

for people who specialize in those skills. For example, a task requiring MVS skills is

referred to as a task for a ″z/OS system programmer″. Consequently, if some of

your team members have multiple skills you might require fewer individuals to

complete your team.

Team members

The following describes the responsibilities and roles involved in administering EIM.

It also defines potential team members for installing and configuring prerequisite

products, and setting up EIM.

© Copyright IBM Corp. 2002, 2008 37

An EIM domain can be administered by the LDAP administrator alone, by an EIM

administrator, or this responsibility can be divided so the domain can be

administered by all of the EIM administrators. Therefore it is advisable to appoint

these administrators early and involve them in your planning.

Tip: EIM administrators play an important role in your organization. The decisions

they make when creating associations between an identifier and a user ID in a

registry can determine who can access your computer systems and what privileges

they have when doing so. IBM recommends that you give this authority to those

individuals in whom you have a high level of trust.

The following table lists team members (alphabetically) and the tasks and skills

needed for setting up EIM:

 Table 9. Roles, tasks, and skills for setting up EIM

Role Tasks Required Skills

EIM administrator Responsibilities include:

v Coordinating domain operations

v Adding, removing, and changing

registries, identifiers, and

associations between identifiers

and user IDs in registries

v Granting and removing access to

the data kept within an EIM domain

Knowledge of the EIM administration

tool you are using

EIM identifier administrator Responsibilities include:

v Creating identifiers

v Modifying identifiers

v Adding and removing only

administrative and source

associations (cannot add or

remove target associations)

Knowledge of the EIM administration

tool you are using

EIM registries administrator Responsibilities include:

v Managing all registries

– Adding and removing only

target associations (cannot add

or remove administrative or

source associations)

– Updating registries

Knowledge of:

v The registries (such as information

dealing with user IDs)

v The EIM administration tool you

are using

EIM registry X administrator Responsibilities include:

v Managing individual registries

– Adding and removing only

target associations (cannot add

or remove administrative or

source associations)

– Updating registry

Knowledge of:

v The particular registry (such as

information dealing with user IDs)

v The EIM administration tool you

are using

Planning

38 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 9. Roles, tasks, and skills for setting up EIM (continued)

Role Tasks Required Skills

LDAP administrator Responsibilities include:

v Installing and configuring LDAP (if

not already done)

v Customizing LDAP configuration for

EIM

v Creating an EIM domain

v Defining users that can bind with

the EIM domain controller

v Defining the first EIM administrator

(optional)

Knowledge of:

v LDAP installation, configuration,

and customization

v EIM administration tool you are

using

User registry administrator Responsibilities include:

v Setting up user profiles

v Serving as EIM registry

administrator (optional)

Knowledge of:

v Tools for administering the user

registry

v EIM administration tool you are

using

System programmer Responsibilities include installing EIM

and other software products

Knowledge of:

v System programming skills

v Installation procedures for the

platform

Application programmer Writes C/C++ applications using EIM

APIs

Knowledge of

v Platform

v C/C++ programming skills

v Compiling programs

Planning for EIM client applications

Before you begin: If you are installing an IBM or vendor-written application that

exploits EIM, check the product documentation for the hardware and software

prerequisites, the specific installation procedures, and configuration procedures.

Generally, the applications that use EIM must run on a system where the EIM APIs

and the LDAP client are installed.

The EIM APIs are supported on the following hardware and software platforms:

 Table 10. EIM APIs software and hardware prerequisites

EIM APIs LDAP client Platform

Included in AIX AIX V5R2 AIX

Enterprise Identity Mapping

(EIM) included in z/OS

Integrated Security Services

LDAP server or IBM Tivoli

Directory Server LDAP server

z/OS

Included in OS/400 V5R2 OS/400 Directory Services OS/400

Web download IBM Directory Server Linux

Windows 2000 Available by Web download Windows2000

Tip: If you are writing your own application to use EIM, the table above can provide

guidance on which platforms the applications can use.

Planning

Chapter 4. Planning for EIM 39

Planning activities for an EIM application include:

1. Identifying the information that is stored in the EIM domain as well as hardware

and software prerequisites. For example, the next couple of sections describes

what information needs to go into an EIM domain

2. Using the worksheets for recording the information required by the EIM

application you are working with. The EIM administrator can take the information

from the worksheets and perform the tasks necessary to set up an EIM domain

Planning for an EIM domain

Planning for EIM application begins with the EIM domain. This domain might

represent your entire enterprise, a division, a department, or even an application.

Plan for the domain to be shared between many applications in order to gain the

maximum benefit from having a centralized repository for mapping information.

When setting up your domain you must:

1. Determine whether or not there is an existing domain to use, or if one should be

created

2. Name the domain (you can also provide an optional description)

Record your answers in Table 11.

 Table 11. Domain worksheet for creating an EIM domain

Parameter name and description Customized value

description— A string that provides a description of the

object you are acting upon.

domainDN — The distinguished name of the EIM domain.

This consists of:

v ibm-eimDomainName=

v domainName — The name of the EIM domain you are

creating, for example: My Domain. (This could be the

name of a company, a department, or an application

that uses the domain.)

v parentDN — The distinguished name for the entry

immediately above the given entry in the directory

information tree hierarchy, for example: o=ibm,c=us

Example:

ibm-eimDomainName=MyDomain,o=ibm,c=us

Planning for EIM registries

The registries that must be defined in an EIM domain are the ones required by the

EIM lookup and administration applications that will be using the domain. The

registries can represent operating system registries such as RACF or OS/400, a

distributed registry such as Kerberos, or a subset of a system registry that is used

exclusively by an application.

Consider the following when planning for your registries:

v An EIM domain can contain registries that exist on any platform. A domain

controller on z/OS might contain registries for non-z/OS platforms and an EIM

domain controller on a non-z/OS platform might contain a z/OS registry, such as

RACF.

Planning

40 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

v The names given to an EIM registry can represent the type of registry, the

system the actual registry is on, its network address or its physical location in

your enterprise.

v The number of registries that can be defined in a domain is limited by the size of

the LDAP directory server where the EIM domain is stored.

Tips:

v Since there might be many registries to consider (source and target), you can

use the following worksheet to accommodate some of your planning tasks, such

as recording the registries the EIM application uses. (Note that an application

might not use all of the available types of associations.) The worksheet can also

be used to record a registry alias used by the application. You can fill out one of

these worksheets for each application using the EIM domain.

v The installation and configuration information for the application should tell you

what types of registries it requires, whether or not registry aliases are used, and

the type of associations between the registry user identities and EIM identifiers

the application requires.

 Table 12. Registry worksheet to help with planning considerations for EIM registries and associations

Registry name Registry type Registry alias Association types

required

Registry description

Developing an identity mapping plan

A critical part of the initial Enterprise Identity Mapping (EIM) implementation

planning process requires that you determine how you want to use identity mapping

in your enterprise. There are two methods that you can use to map identities in

EIM:

Identifier associations

Describe the relationships between an EIM identifier and the user identities

in user registries that represent that person. An identifier association

creates a direct one-to-one mapping between an EIM identifier and a

specific user identity. You can use identifier associations to indirectly define

a relationship between user identities through the EIM identifier.

 If your security policy requires a high degree of detailed accountability, you

may need to use identifier associations almost exclusively for your identity

mapping implementation. Because you use identity associations to create

one-to-one mappings for the user identities that users own, you can always

determine exactly who performed an action on an object or on the system.

Policy associations

Describe a relationship between multiple user identities and a single user

identity in a user registry. Policy associations use EIM mapping policy

support to create many-to-one mappings between user identities without

involving an EIM identifier.

 Policy associations can be useful when you have one or more large groups

of users who need access to systems or applications in your enterprise

where you do not want them to have specific user identities for gaining this

access. For example, you maintain a Web application that access a specific

internal application. You may not want to set up hundreds or thousands of

Planning

Chapter 4. Planning for EIM 41

user identities to authenticate users to this internal application. In this

situation, you may want to configure identity mapping such that all the users

of this Web application are mapped to a single user identity with the

minimum level of authorization required to run the application. You can do

this type of identity mapping by using policy associations.

You may decide to use identifier associations to provide the best control of the user

identities in your enterprise while gaining the largest degree of streamlined

password management. Or, you may decide to use a mixture of policy associations

and identifier associations, where appropriate, while you maintain specific control

over user identities for administrators. Regardless of what type of identity mapping

you decide best meets your business needs and properly fits your security policy,

you need to create an identity mapping plan to ensure that you implement identity

mapping appropriately.

To create an identity mapping plan, you need to develop an EIM identifier naming

plan and plan EIM associations.

Planning considerations for identifiers

Part of your planning activities for an EIM application focuses on the users of the

application who need an identifier in the EIM domain. Consequently, to ease

administration it is important that you create unique identifiers. When planning your

EIM identity mapping needs, you can create unique EIM identifiers for users of

EIM-enabled applications and operating systems in your enterprise when you want

to create one-to-one mappings between user identities for a user. By using identifier

associations to create one-to-one mappings you can maximize the password

management benefits that EIM provides.

Tip: For a domain that does not contain a large number of identifiers you might be

able to use the actual names. However, for a domain containing a large number of

identifiers, you can use an employee number for the identifier and use the real

name in the identifier as an alias. Using an employee number allows an

administrator to add two employees who happen to have the same name.

The naming plan that you develop depends on your business needs and

preferences; the only requirement for EIM identifier names is that they be unique.

Some companies may prefer to use each person’s full, legal name; other

companies may prefer to use a different type of data, such as each person’s

employee number. If you want to create EIM identifier names based on each

person’s full name, you may anticipate possible name duplication. How you handle

potential duplicate identifier names is a matter of personal preference. You may

want to handle each case manually by adding a predetermined character string to

each identifier name to ensure uniqueness; for example, you might decide to add

each person’s department number.

As part of developing an EIM identifier naming plan, you need to decide on your

overall identity mapping plan. Doing so can help you to decide when you need to

be using identifiers and identifier associations versus using policy associations for

mapping identities within your enterprise. To develop your EIM identifier naming

plan, you can use the work sheet below to help you gather information about the

user identities in your organization and to plan EIM identifiers for the user identities.

The work sheet represents the kind of information the EIM administrator needs to

know when he creates EIM identifiers or policy associations for the users of an

application. The identifier description and additional information fields are free-form

and can be used to for descriptive information about the user.

Planning

42 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 13. Identifier worksheet to help with planning considerations for identifiers

Unique name Identifier alias Identifier description Additional information

An application that is written to use EIM may specify an alias that it uses to find the

appropriate EIM identifier for the application, which the application may use in turn

to determine a specific user identity to use. You need to check the documentation

for your applications to determine whether you need to specify one or more aliases

for the identifier. The EIM identifier or user identity description fields are free form

and can be used to provide descriptive information about the user.

You do not need to create EIM identifiers for all members of your enterprise at one

time. After creating an initial EIM identifier and using it to test your EIM

configuration, you can create additional EIM identifiers based on your organization’s

goals for using EIM. For example, you can add EIM identifiers on a departmental or

area basis. Or, you can add EIM identifiers as you deploy additional EIM

applications.

After you gather the information that you need to develop an EIM identifier naming

plan, you can plan associations for your user identities.

Planning considerations for associations

Associations are entries that you create in an EIM domain to define a relationship

between user identities in different user registries. You can create one of two types

of associations in EIM: identifier associations to define one-to-one mappings and

policy associations to define many-to-one mappings. You can use policy

associations instead of, or in conjunction with, identifier associations.

The specific types of associations that you choose to create depends on how a

user uses a particular user identity, as well as your overall identity mapping plan.

You can create any of the following types of identifier associations:

Target associations

Associations for users that normally only access this system as a server

from some other client system. This type of association is used when an

application performs mapping lookup operations.

Source associations

You define source associations when the user identity is the first one that a

user provides to sign on to the system or network. This type of association

is used when an application performs mapping lookup operations.

Administrative associations

You define administrative associations when you want to be able to track

the fact that the user identity belongs to a specific user, but do not want the

user identity to be available to mapping lookup operations. You can use this

type of association to track all the user identities that a person uses in the

enterprise.

A policy association always defines a target association.

Planning

Chapter 4. Planning for EIM 43

It is possible for a single registry definition to have more than one type of

association depending on how the user registry that it refers to is used. Although

there are no limits to the numbers of, or the combinations of, associations that you

can define, keep the number to a minimum to simplify the administration of your

EIM domain.

Typically, an application will provide guidance on which registry definitions it expects

for source and target registries, but not the association types. Each end user of the

application needs to be mapped to the application by at least one association. This

association can be a one-to-one mapping between their unique EIM identifier and a

user identity in the required target registry or a many-to-one mapping between a

source registry of which the user identity is a member and the required target

registry. Which type of association you use depends on your identity mapping

requirements and the criteria the application provides.

Tips:

v Only add those associations to an EIM domain that are required by the EIM

applications that are using the domain. There might be some user IDs in a

physical registry that don’t have mappings within an EIM domain.

The number of associations that can be defined in a domain is limited by the size

of the LDAP directory server where the EIM domain is stored. There is no hard

limit to the number of associations that can be defined between an identifier and

user IDs, and between a user ID and identifiers.

v While there are no limits to the combinations of associations that can be defined,

it is best to keep the number to a minimum to simplify the administration of your

EIM domain.

v The application provides guidance on the registry types it expects, the

association types required, and if additional information must be defined for

target associations.

As you plan for your EIM applications, use the following worksheets as a guideline

for the kind of information the EIM administrator needs to set up the associations.

For each end user of the application, there needs to be at least one association

between their unique identifier and a user ID in the required registry.

 Table 14. Example EIM registry definition information planning work sheet to help with planning considerations for

EIM associations

Registry definition

name

User Registry type Registry definition

alias

Registry description Association types

 Table 15. Example EIM identifier planning work sheet

Unique identifier name Identifier or user identity

description

Identifier alias

Planning

44 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 16. Example identifier association planning work sheet

Identifier unique name:

User registry User identity Association types

 Table 17. Example planning work sheet for policy associations

Policy association

type

Source user registry Target user registry User identity Description

Accessing the EIM domain

To access an EIM domain you must:

1. Be able to bind to the EIM domain controller

You must first determine the appropriate bind mechanism to connect to the

domain controller. EIM APIs support several different mechanism for

establishing a connection with the EIM domain controller, each providing a

different level of authentication and encryption of the connection. The possible

choices are:

Simple Binds

A simple bind is an LDAP connection where an LDAP client provides a

bind distinguished name and a bind password to the server for

authentication. The bind distinguished name and bind password are

defined by the administrator in the LDAP directory.

Server authentication with SSL - server side authentication

An LDAP server can be configured for SSL or TLS secure connection.

The LDAP client and server use digital certificates to encrypt the

connection. Only the LDAP server is authenticated. A bind distinguished

name and password are used to authenticate the end user.

Client authentication using SSL

Provides an additional level of authentication. The LDAP server is

configured to require both the LDAP client and server to be

authenticated before a connection is established. Digital certificates are

used by the LDAP client instead of bind distinguished names and

passwords, and the connection is encrypted.

Kerberos authentication

An LDAP client can be authenticated to the server using Kerberos,

which is a trusted third-party, private key, network authentication system.

The choice of a bind mechanism is based on the level of security required by

the EIM application and the authentication mechanisms supported by the LDAP

server hosting the EIM domain. The LDAP server might also require additional

configuration to enable the desired authentication mechanism. You must check

the documentation (for the LDAP server you are using for your domain

controller) for details on how to perform the configuration.

Planning

Chapter 4. Planning for EIM 45

2. Make sure that the bind subject is a member of an EIM authority group. Refer to

“EIM access control” on page 30 for more information.

To access the EIM domain, you must belong to an EIM-defined LDAP access

control group or be the LDAP administrator. There are several access control

groups that are involved in maintaining an EIM domain. Members of the groups

have the ability to update or view different portions of the EIM domain. For

information on team members for these groups, see “Team members” on page

37.

Tip: Use the worksheet below as a guide when considering the information needed

by the application to access the EIM domain. The EIM application provides

guidance on the types of bind mechanisms and the EIM authorities it requires of

end users. The values entered here are used by the LDAP administrator to define

the bind identity to the LDAP directory server, and the EIM administrator to give the

bind identity access to the EIM domain. EIM applications that perform lookups

typically require EIM mapping operations authority.

 Table 18. Bind worksheet to help in planning for accessing the EIM domain

EIM authorities required Bind identity Bind mechanism Reason needed

Planning considerations for an EIM domain controller

Restriction: EIM requirements on LDAP include the following:

v An LDAP directory server that supports the LDAP (Version 3) protocol. It must

also understand the following attributes:

– ibm-entryUUID attribute

– ibmattributetypes: acIEntry, acIPropagate, acISource, entryOwner,

ownerPropagate, ownerSource

– New attribute types and object classes for EIM (schema updates)

Table 19 lists the LDAP servers that can be used as an EIM domain controller.

 Table 19. Software and hardware worksheet to help in planning for your EIM domain controller

LDAP servers Operating system Hardware

IBM Directory Server v5.1 AIX, Linux, Windows 2000 pSeries® or xSeries™

Integrated Security Services LDAP

server

z/OS V1R6 zSeries™

IBM Tivoli Directory Server LDAP

server

z/OS V1R8 zSeries

OS/400 Directory Services OS/400 iSeries®

After reviewing the LDAP directory servers available to you, you can record your

choice in the work sheet below.

Planning

46 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 20. Information needed for LDAP administration

Parameter name and description Customized value

ldapHost — This consists of:

v The string ldap:// or ldaps://

v The host name or IP address

v The port number (this is optional)

Example:

ldap://some.ldap.host:389

ldaps://some.ldap.host

Rules:

1. The LDAP server must be configured for your desired bind mechanisms in order

for them to operate successfully. Refer to “Accessing the EIM domain” on page

45 for more information.

2. Before an EIM domain controller can be migrated to the next release, the LDAP

administrator must apply the enhanced schema elements to the LDAP directory.

3. New EIM lookup applications and administration applications (introduced in

z/OS V1R6 or later) will work only with the enhanced domain controller. Existing

EIM administration applications continue to work with the enhanced domain

controller. However, the new policy and certificate support are not available. For

more information regarding EIM client applications, see “Planning for EIM client

applications” on page 39.

Planning EIM administration tools

Some basic steps that must be performed in order to set up an EIM domain are:

1. Creating the domain and define the EIM administrator

2. Creating the registries used by the applications

3. Adding the identifiers

4. Adding the associations

The EIM administrator uses the data recorded in the worksheets provided to

perform these tasks. These worksheets are located at “Planning for EIM client

applications” on page 39.

Currently, IBM offers several tools an administrator can use to manage the content

of an EIM domain, such as the iSeries Navigator or the z/OS eimadmin utility.

Software vendors might also offer administration tools in the future. More

information can be found in product documentation about the hardware and

software prerequisites for the tools, installation, and configuration procedures.

Rule: Generally, administration tools must run on a system where the EIM APIs and

the LDAP client are installed

If you plan to use the z/OS eimadmin utility, remember it is part of z/OS Integrated

Security Services Enterprise Identity Mapping. (The eimadmin command is issued

from the z/OS UNIX System Services shell.)

Planning

Chapter 4. Planning for EIM 47

Customizing EIM on your operating system

The platform that supports EIM might provide some unique customizations to allow

EIM applications to take advantage of operating system specific features. For

example, on z/OS the z/OS Security Server RACF provides RACF profiles that

allow a security administrator to define the EIM domain used by an application and

the necessary bind credentials.

Task roadmap for implementing EIM

Table 21 shows the tasks and associated procedures for implementing EIM on

z/OS. These tasks will constitute a major part of your implementation plan. Your

implementation plan should include major tasks, responsibile parties, and a realistic

estimate of time and effort required. The major tasks for implementing EIM are

provided here as a basis for you to build your own plan.

 Table 21. Tasks for implementing EIM on z/OS

Tasks Associated procedures for z/OS

Install and configure the EIM domain controller Refer to “Steps for installing and configuring the EIM

domain controller on z/OS” on page 49.

Install and configure the EIM administration utility Refer to “Installing and configuring EIM on z/OS” on page

52.

Use RACF commands to set up and tailor EIM Refer to Chapter 6, “Using RACF commands to set up

and tailor EIM,” on page 67.

Ongoing administration tasks Refer to “Steps for using the eimadmin utility to manage

an EIM domain” on page 53.

Planning

48 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Chapter 5. Setting up EIM on z/OS

If you are using EIM on z/OS, many of the topics discussed previously are still

applicable. This chapter additionally (and specifically) explores:

v “Domain authentication methods” on page 57

v “Steps for installing and configuring the EIM domain controller on z/OS”

v “Installing and configuring EIM on z/OS” on page 52

v “Steps for using the eimadmin utility to manage an EIM domain” on page 53

v “Installation considerations for applications” on page 59

It also explores topics about ongoing administration, such as:

v “Managing registries” on page 60

– “Adding a system and application registry” on page 60

– “Removing a registry” on page 60

v “Working with registry aliases” on page 61

– “Assigning an alias” on page 61

– “Removing an alias” on page 61

– “Assigning an alias name to a different registry” on page 62

v “Adding a new user” on page 62

– “Adding an identifier” on page 62

– “Adding associations” on page 63

v “Removing a user” on page 63

– “Removing associations” on page 64

– “Removing an identifier” on page 64

v “Changing access authority” on page 64

– “Adding access authorities” on page 64

– “Removing access authorities” on page 65

Steps for installing and configuring the EIM domain controller on z/OS

Before you begin:

1. You will need LDAP skills to complete this procedure. There are two LDAP

servers you can use — the Integrated Security Services (ISS) LDAP server or

the IBM Tivoli Directory Server (IBM TDS) LDAP server.

2. You will need to refer to z/OS Integrated Security Services LDAP Server

Administration and Use or IBM Tivoli Directory Server Administration and Use

for z/OS.

Rule: Also, for the ISS LDAP server, the following requirements must be met:

v APAR OW55078 (PTF UW92346) must be applied.

v LDAP must be configured to use the TDBM backend.

v The SDBM (RACF) backend is optional.

For the IBM TDS LDAP server, LDAP must be configured to use either the TDBM

or the LDBM backend.

1. First, perform the following steps to install and configure LDAP:

a. Use the following tables to decide what you first need to do. If you are using

the ISS LDAP server, refer to Table 22 on page 50. If you are using the IBM

TDS LDAP server, refer to Table 23 on page 50.

© Copyright IBM Corp. 2002, 2008 49

Table 22. EIM installation and configuration overview for the ISS LDAP server

If ... Then... Notes

You do not have LDAP installed and

configured...

Follow the instructions in the

Administration section of z/OS

Integrated Security Services LDAP

Server Administration and Use to

configure the TDBM backend.

The schemas schema.IBM.ldif and

schema.user.ldif need to be loaded.

You have LDAP installed and

configured for the SDBM backend

but not the TDBM backend...

Follow the instructions in the

Administration section of z/OS

Integrated Security Services LDAP

Server Administration and Use to

configure the TDBM backend.

The schemas schema.IBM.ldif and

schema.user.ldif need to be loaded.

You have LDAP installed and

configured for the TDBM backend...

Go to the next step. This assumes you have loaded

schema.IBM.ldif and

schema.user.ldif.

You plan to use RACF user IDs and

passwords to bind within the EIM

domain controller...

Follow the instructions in the

Administration section of z/OS

Integrated Security Services LDAP

Server Administration and Use to

configure the SDBM backend for EIM.

 Table 23. EIM installation and configuration overview for the IBM TDS LDAP server

If ... Then... Notes

You do not have LDAP installed and

configured...

Follow the instructions in the

Administration section of IBM Tivoli

Directory Server Administration and

Use for z/OS to configure the TDBM

or LDBM backend.

The schemas schema.IBM.ldif and

schema.user.ldif need to be loaded.

You have LDAP installed and

configured for the SDBM backend

but not the TDBM or LDBM

backend...

Follow the instructions in the

Administration section of IBM Tivoli

Directory Server Administration and

Use for z/OS to configure the TDBM

or LDBM backend.

The schemas schema.IBM.ldif and

schema.user.ldif need to be loaded.

You have LDAP installed and

configured for the TDBM or LDBM

backend...

Go to the next step. This assumes you have loaded

schema.IBM.ldif and

schema.user.ldif.

You plan to use RACF user IDs and

passwords to bind within the EIM

domain controller...

Follow the instructions in the

Administration section of IBM Tivoli

Directory Server Administration and

Use for z/OS to configure the SDBM

backend for EIM.

Perform the following steps for the decision you have made.

b. The LDAP server must be configured to accept the different types of bind

requests. The information from worksheet Table 18 on page 46 lists the bind

mechanisms required by the EIM client applications using this EIM domain

controller. See z/OS Integrated Security Services LDAP Server

Administration and Use or IBM Tivoli Directory Server Administration and

Use for z/OS for more details.

c. Start the z/OS LDAP server as described in z/OS Integrated Security

Services LDAP Server Administration and Use or IBM Tivoli Directory Server

Administration and Use for z/OS.

d. Load the schema definitions.

50 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Rule: If you are migrating from a pre-z/OS Version 1 Release 4 ISS LDAP

server, schema.IBM.ldif must be loaded. Refer to z/OS Integrated Security

Services LDAP Server Administration and Use for migration considerations

that apply.

Attention:

v An EIM domain must be updated using the EIM APIs or administrative

applications that use the EIM APIs. IBM does not recommend using the

LDAP utilities and LDAP client APIs to update information in an EIM domain.

v Do not alter the EIM schema definitions unless directed to do so by your IBM

Service representative during problem diagnosing.

Restriction: z/OS LDAP by default has a 511–character limit on the length of a

distinguished name for an entry. If this default length is exceeded, message

ITY0023 (indicating an unexected LDAP error) is issued, indicating that DB2®

needs to be reconfigured to support longer distinguished names. This error

might show up when working with long identifier, registry, domain names or

suffixes. See z/OS Integrated Security Services LDAP Server Administration and

Use or IBM Tivoli Directory Server Administration and Use for z/OS for more

details.

2. Second, consider the options you have for setting up an EIM domain that

includes z/OS:

a. Use LDAP on z/OS as the domain controller. (z/OS and non-z/OS

applications could access the data.) If using the ISS LDAP server, it must be

configured with the TDBM backend. If using the IBM TDS LDAP server, it

must be configured with either the TDBM or LDBM backend. If you plan to

use RACF user IDs and passwords for the bind credentials, configure the

server with the SDBM and the TDBM backends.

b. Set up the z/OS LDAP server in multi-server mode. This configuration has

multiple LDAP servers sharing the same TDBM or LDBM backend store,

which is useful if you want to balance the work load between your LDAP

servers.

c. The z/OS EIM application can access a domain controller that resides on

another platform.

Figure 12 on page 52 represents a basic z/OS configuration. Be aware that the

WLM support shown in this figure is available only with the ISS LDAP server. It

is not available with the IBM TDS LDAP server.

Chapter 5. Setting up EIM on z/OS 51

Installing and configuring EIM on z/OS

Your z/OS system programmer uses SMP/E to install EIM into an HFS directory. By

default, EIM is installed in the /usr/lpp/eim directory, but your system programmer

can determine whether to change the default for these directories.

Table 24 lists important directories for EIM installation. Your system programmer

should review the rightmost column of this table, crossing out any defaults that have

changed and recording the correct directory names.

Tip: An EIM administrator who uses the eimadmin utility might desire that the

directory for the eimadmin utility be placed in the PATH environment variable. This

enables the ability to run the utility without having to specify the path when issuing

the command (or changing to the /usr/lpp/eim/bin directory prior to issuing the

command). The PATH enviroment variable can be modified to include the EIM

programs directory by issuing the following command from a shell prompt:

export PATH=$PATH:/usr/lpp/eim/bin

This adds the EIM programs directory to the end of the list of directories to search

for programs. Add the export command to a user’s .profile file so that each time

the user enters a shell, the PATH is updated.

 Table 24. HFS install directories

Directory and description Default value or customized value

Main install directory /usr/lpp/eim

Figure 12. EIM configurations involving z/OS

52 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 24. HFS install directories (continued)

Directory and description Default value or customized value

EIM library directory; contains the runtime library(eim.dll)

and the definition side deck file(eim.x) for linking EIM

applications. Also contains the EIM Java Interface classes

(eim.jar), zOS Provider classes (eimzOS.jar) Javadoc for

EIM Java (eimzOS_DOC.jar) and routines used by EIM

Java (libeimJNI.so)

Note: These files are also symbolically linked in the

/usr/lib directory.

/usr/lpp/eim/lib

Message catalog directories

Note: Files in C directory are symbolically linked to the

En_US.IBM-1047 directory message catalog files. There

are additional symlinks of the En_US.IBM-1047 message

catalog files in the /usr/lib/nls/msg/C and

/usr/lib/nls/msg/En_US.IBM-1047 directories. Additionally,

there are symbolic links to the message catalog files in

the Ja_JP directory in the /usr/lib/nls/msg/Ja_JP directory

/usr/lpp/eim/lib/nls/msg/En_US.IBM-1047 ,

/usr/lpp/eim/lib/nls/msg/C, and /usr/lpp/eim/lib/nls/
msg/Ja_JP

C/C++ header files for the EIM API prototypes, defined

data types, and message catalog constants

Note: The header files are also symbolically linked in the

/usr/include directory.

/usr/lpp/eim/include

EIM programs directory (which is where the eimadmin

utility program is located)

/usr/lpp/eim/bin

EIM man page directory

Note: There is a symbolic link to the man page in the

/usr/man/C/cat1 and /usr/man/En_US.IBM-1047/cat1

directories.

/usr/lpp/eim/man/En_US.IBM-1047/cat1 and

/usr/lpp/eim/man/C/cat1

Steps for using the eimadmin utility to manage an EIM domain

Before you begin:

This section provides an example of issuing the eimadmin command to perform

tasks such as:

v Creating an EIM domain

v Granting administration authority

v Adding registries

v Adding enterprise identifiers

v Defining associations

You need to be familiar with this command. Refer to Chapter 9, “The eimadmin

utility,” on page 109 and familiarize yourself with the eimadmin command.

Note: The eimadmin utility can manage an EIM domain in a z/OS or non-z/OS EIM

domain controller. Refer to for “Planning for EIM client applications” on page

39 for more information.

You can perform the following steps to create and manage an EIM domain using

the eimadmin utility.

Before you begin:

v The eimadmin utility examples can be entered from the z/OS UNIX System

Services shell by an EIM administrator.

Chapter 5. Setting up EIM on z/OS 53

v For improved readability each command option is shown on a separate line.

v In most cases you specify multiple options on a single line, separating them with

one or more spaces.

v If necessary, you can use the backslash (\) continuation character to break the

command into multiple lines.

v The access authority required for successful completion depends on the

particular eimadmin operation you specify, and is determined by the bind

credential you specify for LDAP authentication. The distinguished name that

LDAP associates with the credential should be a member of one or more EIM

access groups, which define access authority to EIM data. Refer to “Domain

authentication methods” on page 57 for a description of supported bind methods.

To create the domain:

1. Create an EIM domain by entering a command such as the following from the

z/OS shell:

eimadmin

-aD

-d domainDN

-n description

-h ldapHost

-b bindDN

-w bindPassword

The bindDN must be the distinguished name for the LDAP administrator. (The

description is optional.)

Example: The following command creates the EIM domain ″My Domain″:

eimadmin

-aD

-d ’ibm-eimDomainName=My Domain,o=ibm,c=us’

-n ’An EIM Domain’

-h ldap://some.ldap.host

-b ’cn=ldap administrator’

-w secret

Note: This assumes that the ″o=ibm,c=us″ objects are defined in the LDAP

Directory. If these objects are not defined, refer to “Example for creating

LDAP suffix and user objects” on page 418 for assistance in defining

these objects if necessary.

2. Give an administrator EIM administrator authority to the domain by entering a

command such as the following from the z/OS shell:

eimadmin

-aC

-d domainDN

-c ADMIN

-q accessUser

-f accessUserType

-h ldapHost

-b bindDN

-w bindPassword

The parameter following -c is the accessType parameter. In this situation, the

value must be ADMIN. The bindDN must be the distinguished name for the LDAP

administrator.

Tip: If you plan on dividing the administration responsibilities, repeat this

command for the other administrative users.

54 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Example:The following command can be issued by the LDAP administrator to

give EIM administrator, ″cn=eim administrator,ou=dept20,o=ibm,c=us″, authority

to adminster the EIM domain:

eimadmin

-aC

-d ’ibm-eimDomainName=My Domain,o=ibm,c=us’

-c ADMIN

-q ’cn=eim administrator,ou=dept20,o=ibm,c=us’

-f DN

-h ldap://some.ldap.host

-b ’cn=ldap administrator’

-w secret

Note: This assumes that the ″cn=eim administrator,ou=dept20,o=ibm,c=us″ is

defined in the LDAP Directory. If this object is not defined, refer to

“Example for creating LDAP suffix and user objects” on page 418 for

assistance in defining these objects if necessary.

3. Add registries to the EIM domain by entering a command such as the following

from the z/OS shell:

eimadmin

-aR

-d domainDN

-r registryName

-y registryType

-n description

-h ldapHost

-b bindDN

-w bindPassword

Note: The —y parameter specifies registry type. (The description is optional.)

See page 119 for details.

Examples:

The following command adds a RACF registry to the EIM domain named ″My

Domain″:

eimadmin

-aR

-d ’ibm-eimDomainName=My Domain,o=ibm,c=us’

-r ’RACF Pok1’

-y RACF

-n ’the RACF Registry on Pok System 1’

-h ldap://some.ldap.host

-b ’cn=eim administrator,ou=dept20,o=ibm,c=us’

-w secret

The following command adds an OS/400 registry to the EIM domain named ″My

Domain″:

eimadmin

-aR

-d ’ibm-eimDomainName=My Domain,o=ibm,c=us’

-r ’OS400 RCH1’ -y OS400

-n ’the OS400 Registry on Rochester System 1’

-h ldap://some.ldap.host

-b ’cn=eim administrator,ou=dept20,o=ibm,c=us’

-w secret

4. Add enterprise identifiers to the domain by entering a command such as the

following from the z/OS shell:

eimadmin

-aI

-d domainDN

-i identifier

Chapter 5. Setting up EIM on z/OS 55

-n description

-h ldapHost

-b bindDN

-w bindPassword

v You can add identifiers at any time after creating the domain.

v The preceding command adds a single identifier to the domain. Alternately,

you can add multiple identifiers by specifying a file name as standard input to

the eimadmin utility. Specifying a file name indicates using the file of

identifiers as input for batch processing of multiple identifiers.

Repeat Step 4 on page 55 as needed.

The bindDN must have EIM administrator authority or EIM Identifier

administrator authority.

The following command can be issued by the EIM administrator add to an EIM

identifier to the domain My Domain:

eimadmin

-aI

-d ’ibm-eimDomainName=My Domain,o=ibm,c=us’

-i ’John Adam Day’

-h ldap://some.ldap.host

-b ’cn=eim administrator,ou=dept20,o=ibm,c=us’

-w secret

5. Create associations between registry user IDs and identifiers by entering

commands from the z/OS shell (One or more of the association types, -t source,

-t target, -t admin, are required on the command.):

eimadmin

-aA

-d domainDN

-r registryName

-u userid

-i identifier

-t admin

-t source

-t target

-h ldapHost

-b bindDN

-w bindPassword

The following command creates associations between the user ID JD in the

RACF Pok1 registry:

eimadmin

-aA

-d ’ibm-eimDomainName=My Domain,o=ibm,c=us’

-r ’RACF Pok1’ -u JD -i ’John Day’ -t source -t target

-h ldap://some.ldap.host -b ’cn=eim administrator,ou=dept20,o=ibm,c=us’

-w secret

After you enter these commands, you can use the domain for lookup

operations. For the preceding examples, the only user mappings available are

mappings from JD to JOHNDAY and from JOHNDAY to JD.

Notes:

a. You can create associations only after registries and identifiers are in place.

b. The command creates only two associations. Conversely, you can create

multiple associations by specifying a file name as standard input to the

eimadmin command. Specifying a file name indicates using a file of

associations as input for batch processing of multiple associations.

Repeat Step 5 as needed.

6. Give users lookup access to the EIM domain.

56 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimadmin

-aC

-d domainDN

-c MAPPING

-q accessUser

-f DN

-h ldapHost

-b bindDN

-w bindPassword

The eimadmin utility allows you to grant access one user at a time or a list of

users can be provided in a file using the following command:

eimadmin

-aC

-d domainDN

-c MAPPING

-h ldapHost

-b bindDN

-w bindPassword <input-fileName

The file must contain a label line following by at least one user name. For

example, a bind distinguished name, and the type of the user name.

CU ;CS ;

cn=John Day,c=us DN

The following command can be issued by the EIM administrator add to give the

end user John Day mapping (lookup) authority to the domain My Domain:

eimadmin

-aC

-d ’ibm-eimDomainName=My Domain,o=ibm,c=us’

-c MAPPING

-q ’cn=John Day,c=us’

-h ldap://some.ldap.host

-b ’cn=eim administrator,ou=dept20,o=ibm,c=us’

-w secret

Domain authentication methods

Authentication occurs when an EIM application connects (binds) to the EIM domain

controller. z/OS EIM supports the following three authentication methods recognized

by LDAP:

v Simple (with or without CRAM-MD5 password protection)

v Digital certificate

v Kerberos

Your LDAP server configuration and security requirements determine which method

you choose. The examples in this section illustrate how you can use these methods

with the eimadmin utility.

This information explains how the bind credentials specified correspond to the

distinguished name that LDAP uses for access checking. Your access to EIM data

is determined by the authority groups of which the distinguished name is a member.

The exception is the distinguished name for the LDAP administrator that has

unrestricted access.

Using simple binds

A distinguished name and password are sufficient credentials for a SIMPLE

eimadmin connect type.

eimadmin

-lD

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

Chapter 5. Setting up EIM on z/OS 57

-h ldap://some.ldap.host

-S SIMPLE

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

Note: Unless an SSL session has been established, the password is sent over the

network in plain text, making this method the least secure. The distinguished

name that you specify is the one LDAP uses for access checking.

Using CRAM-MD5 password protection

You can use CRAM-MD5 for simple authentication without sending the bind

password over the network in plain text, provided both client and server support the

method. In the utility command, specify the connect type CRAM-MD5 to indicate

simple authentication with password protection.

eimadmin

-lD

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-S CRAM-MD5

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

Using digital certificates

To bind using a digital certificate, specify the EXTERNAL connect type on the

eimadmin command. Ensure the host name identifies a secure host:port value

prefixed with ldaps://.

Rules:

v You must also specify the name of either a key database file or RACF key ring

that contains your client certificate.

v You must specify the label for that certificate if it is not the defined default.

v If you specify a key database file but not its password, the utility prompts you for

it.
eimadmin

-lD

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldaps://secure.ldap.host

-S EXTERNAL

-K client.kdb

-P clientpw

-N eimadmincert

Note: LDAP uses the client certificate’s subject distinguished name for access

checking.

Using Kerberos

To bind using a Kerberos identity, specify connect type GSSAPI on the eimadmin

command. No other credential information is required, but the default Kerberos

credential must have been established through a service such as kinit prior to

entering the command.

kinit eimadministrator@realm.com

eimadmin

-lD

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-S GSSAPI

58 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

For access checking, LDAP considers a distinguished name formed by prefixing the

Kerberos principal name with ″ibm-kgn=″ or distinguished names located through

special mapping or searches. See z/OS Integrated Security Services LDAP Server

Administration and Use for more information.

Using Secure Sockets Layer (SSL)

You can establish an SSL connection along with any of the supported authentication

types if your domain controller is configured as a secure host enabled for server

authentication.

A secure host is required for EXTERNAL connect.

The strength of SSL is that data transferred over the connection is encrypted,

including the password for a SIMPLE bind. The eimadmin utility recognizes the

need for an SSL connection when you specify an LDAP host name prefixed

ldaps://. It then requires that you specify a RACF key ring, or a key database file

and its password.

Installation considerations for applications

EIM applications on z/OS may require authority to RACF profiles. See “Preparing to

run an EIM application” on page 80 for more information.

Configuration considerations for enabling remote services

To enable EIM to work with remote services such as identity cache and other forms

of remote authorization, additional configuration steps are necessary. See

“Configuring your environment to use the z/OS Identity Cache” on page 425 and

“Configuring the IBM Tivoli Directory Server for remote services support” on page

432 for details on these steps.

Ongoing administration

This section explains how to perform additional administration tasks:

v Managing registries

– Adding a system and application registry

– Removing a registry

v Assigning an alias

– Assigning an alias

– Removing an alias

– Assigning an alias to a different registry

v Adding a new user

– Adding an identifier

– Adding associations

v Removing a user

– Removing associations

– Removing an identifier

v Changing access authority

– Adding access

– Removing access

Chapter 5. Setting up EIM on z/OS 59

Managing registries

A domain typically contains multiple registries. User identities for a particular system

are associated with a system registry, while a subset of identities might be

associated with an application registry.

Adding a system and application registry

Create a system registry by entering the following command:

eimadmin

-aR

-r ’RACF Pok1’

-y racf

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

Enter the following command to define an application registry that is dependent on

a previously-defined system registry:

eimadmin

-aR

-r ’App1’

-y racf

-g ’RACF Pok1’

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

Note: Once you define an application registry, you can refer to it by name in EIM

APIs and eimadmin commands without having to identify it as an

application-type registry.

Listing a registry

You can list any registry using a command similar to the following:

eimadmin

-lR

-r ’App1’

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

Removing a registry

To remove a registry, issue the following command:

eimadmin

-pR

-r ’App1’

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

All associations linked to the registry are automatically deleted.

 Attention: EIM refuses to remove a system registry if any application registries

depend on it.

1. You can find the dependents that you must remove by searching for all

occurrences of the system registry name in the output from the following

command, which lists all registries:

60 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimadmin

-lR

-r ’*’

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

2. With caution, you can use the ’-s rmdeps’ option of eimadmin to remove

dependent application registries automatically when removing the system

registry.

eimadmin

-s rmdeps

-pR

-r ’RACF Pok1’

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

Working with registry aliases

You can define alias names to facilitate registry administration. By establishing

aliases that applications use to look up actual registry names, you can make

non-disruptive registry changes by managing alias assignments.

Rule: When defining or referencing a registry alias, you must specify an associated

registry type. You can use one of the suggested types (refer to

“eimChangeRegistryAlias” on page 207) or invent your own.

Assigning an alias

Enter the following command to assign an alias name to an existing registry:

eimadmin

-mR

-r ’RACF Test Pok1’

-x ’z/OS’ -z ’RACF’

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

This example defines the alias ’z/OS’ (of type ’RACF’) for registry ’RACF Test

Pok1’.

Listing an alias

You can list the registry and its aliases using the following command:

eimadmin

-lR

-r ’RACF Test Pok1’

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

Removing an alias

You can delete an alias for a registry using the following command:

eimadmin

-eR

-r ’RACF Test Pok1’

-x ’z/OS’ -z ’RACF’

Chapter 5. Setting up EIM on z/OS 61

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

This example removes the alias z/OS’ (of type ’RACF’) for registry ’RACF Test

Pok1’.

Assigning an alias name to a different registry

To assign an alias name to a different registry, add the alias name and type to the

registry attributes as shown in the example for adding an alias name to a registry

above.

Multiple registries can have the same registry alias values. However, if you want the

alias to map to a single registry, you must remove that alias from registries in which

is was previously defined.

Enter the following two commands to reassign alias ’z/OS’ from registry ’RACF Test

Pok1’ to registry ’RACF Pok1’:

eimadmin

-mR

-r ’RACF Pok1’

-x ’z/OS’ -z ’RACF’

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

eimadmin

-eR

-r ’RACF Test Pok1’

-x ’z/OS’ -z ’RACF’

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

Adding a new user

You can create an new EIM identifier to represent a new person entering your

enterprise. As the person is given access to each system or application through its

user registry, you can define an EIM association between the EIM identifier and the

corresponding registry defined in EIM.

Adding an identifier

When you create a new EIM identifier, it is assigned a name that is unique within

the domain.

The eimadmin utility requires that you specify a unique name (unlike the

eimAddIdentifier API option that generates a unique name for you).

You can assign an alternate name, or alias, to multiple identifiers. This non-unique

name can be used to further describe the represented individual or to serve as an

alternate identifier for lookup operations.

Enter the following command to add a new identifier ’John S. Day’ with two aliases:

eimadmin

-aI

-i ’John S. Day’

-j ’654321’

-j ’Contractor’

62 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

You can list the new identifier using the unique name.

The utility returns one entry only.

eimadmin

-lI

-i ’John S. Day’

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

You can also list the new identifier using an alias name.

The utility returns all entries having ’Contractor’ defined as an alternate name.

eimadmin

-lI

-j ’Contractor’

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

Adding associations

You can register the system and application user IDs assigned to the individual by

defining EIM associations between the identifier and the corresponding registries.

Enter the following command to create source and target associations for user ID

’JD’ in registry ’RACF Pok1’:

eimadmin

-aA

-i ’John S. Day’

-r ’RACF Pok1’

-u ’JD’

-t source

-t target

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

Listing associations

Enter the following command to list all associations for ’John S. Day’:

eimadmin

-lA

-i ’John S. Day’

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

Removing a user

To completely erase a person’s identity from your EIM domain, remove the

identifier.

If you only need to reflect the deletion of a user ID from a registry, simply remove

the corresponding EIM associations.

Chapter 5. Setting up EIM on z/OS 63

Removing associations

Enter the following command to remove the source and target associations for user

ID ’JD’ in registry ’RACF Pok1’:

eimadmin

-pA

-i ’John S. Day’

-r ’RACF Pok1’

-u ’JD’

-t source

-t target

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

Removing an identifier

Enter the following command to remove an identifier and its associations, including

identifier aliases:

eimadmin

-pI

-i ’John S. Day’

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

Changing access authority

A user is permitted to perform EIM administrative or lookup operations based on the

authority groups containing the user’s LDAP distinguished name (DN). The user’s

DN is determined by the credentials authenticated when connecting to LDAP.

Suppose a user has registry administrator authority over a specific registry and your

task is to switch the user’s authority to a different registry. You can accomplish this

task in two steps:

1. Adding the user to the new registry adminstrator group

2. Removing the user from the prior group

Adding access authorities

Enter the following command to add user DN ’cn=Reggie

King,ou=dept20,o=ibm,c=us’ to the registry administration group for ’RACF Pok1’:

eimadmin

-aC

-q ’cn=Reggie King,ou=dept20,o=ibm,c=us’

-f DN

-c registry

-r ’RACF Pok1’

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

Listing access authorities

Enter the following command to list all EIM access authorities for the user:

eimadmin

-lC

-q ’cn=Reggie King,ou=dept20,o=ibm,c=us’

-f DN

64 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

Removing access authorities

Enter the following command to remove the user from the prior registry

administration group for ’RACF Test Pok1’:

eimadmin

-pC

-q ’cn=Reggie King,ou=dept20,o=ibm,c=us’

-f DN

-c registry

-r ’RACF Test Pok1’

-d ’ibm-eimDomainName=MyDomain,o=ibm,c=us’

-h ldap://some.ldap.host

-b ’cn=eimadministrator,ou=dept20,o=ibm,c=us’

-w secret

Chapter 5. Setting up EIM on z/OS 65

66 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Chapter 6. Using RACF commands to set up and tailor EIM

An EIM administration application creating, deleting, or changing descriptive

information about a domain must provide domain name and bind information. This

chapter explores:

v “Setting up default domain LDAP URL and binding information” on page 68

– “Storing LDAP binding information in a profile” on page 68

- “Adding EIM domain and bind information for servers or administrative

users” on page 69

- “Adding a system default using the IRR.EIM.DEFAULTS profile” on page 69

- “Adding a system default using the IRR.PROXY.DEFAULTS profile” on page

70

v “Optionally setting up a registry name for your local RACF registry” on page 70

– “Steps for setting up lookups that do not need a registry name” on page 70

v “Ongoing RACF administration” on page 71

– “Disabling use of an EIM domain” on page 71

– “Using output from the RACF database unload utility and eimadmin to prime

your EIM domain with information” on page 71

Using RACF for EIM domain access

The RACF administrator can use RACF commands to do the following:

v Add an EIM domain name and bind information for system-wide use

v Add an EIM domain name and bind information for use by a server

v Add an EIM domain name and bind information for use by an administrative user

v Assign a name to the local RACF registry for use by a lookup application

Tip: Issuing these commands is optional. However, setting up your system this way

can eliminate the need for individual applications to handle EIM domain and bind

information.

The default domain and bind information can be specified in one of three places:

1. The user ID the application runs under has the name of an LDAPBIND class

profile in its USER profile

2. The IRR.EIM.DEFAULTS profile in the LDAPBIND class

3. The IRR.PROXY.DEFAULTS profile in the FACILITY class

These RACF profiles can be set up in such a way as to control the access the

application has to the EIM domain:

v New connections with an EIM domain can be enabled or disabled by using

keywords on the RDEFINE or RALTER commands.

v Bind credentials can be specific to the server or administrator who uses them.

The EIM APIs try to retrieve the information from a profile if the application does not

explicitly supply the information to the EIM APIs using parameters. Applications or

other services that use EIM can instruct their callers to define a profile in the

LDAPBIND class profile.

© Copyright IBM Corp. 2002, 2008 67

Setting up default domain LDAP URL and binding information

Servers that use an EIM domain require the name and location of the EIM domain

and the appropriate credentials to bind to the LDAP directory service containing the

EIM domain. You can store the EIM domain name, its URL, bind distinguished

name, and bind password in RACF profiles. (See Table 25 for the ways a security

administrator can set up profiles.)

This section explores:

v “Storing LDAP binding information in a profile”

– “Adding EIM domain and bind information for servers or administrative users”

on page 69

– “Adding a system default using the IRR.EIM.DEFAULTS profile” on page 69

– “Adding a system default using the IRR.PROXY.DEFAULTS profile” on page

70

Storing LDAP binding information in a profile

Before you begin:

v Use the following decision table to determine which profile to use:

 Table 25. Decision table for RACF profiles

If ... Then ...

The EIM domain is in the default system

LDAP directory ...

Set up the IRR.PROXY.DEFAULTS profile in

the FACILITY class. (This is the simplest way

to set up a profile.)

A server needs to reference an EIM domain

that is not in the system default LDAP

directory ... (This could be because the

IRR.PROXY.DEFAULTS profile has different

bind information than the application using

the EIM domain requires.)

Set up a profile in the LDAPBIND class.

Add the name of the LDAPBIND class profile

to the user profile used by the application.

v Tip: You need to know certain information to use as parameters in RACF

commands. Refer to the z/OS Security Server RACF Command Language

Reference for more information. Fill in the missing (Value column) information in

the following table:

 Table 26. LDAP information needed for creating RACF profiles

Information needed Where to get it Value

bindDN —The distinguished name to use for

LDAP binding.

Example:

cn=EIM user,o=ibm,c=us

From the LDAP administrator

bindPasswd — The password for LDAP binding.

Example:

secret

From the LDAP administrator Note that this is not something

that should be written down.

domainDN — The distinguished name of the EIM

domain.

From the EIM administrator

68 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 26. LDAP information needed for creating RACF profiles (continued)

Information needed Where to get it Value

ldapHost — The LDAP host. This consists of the:

v String LDAP:// or LDAPS:// , which specifies the

LDAP protocol to use when binding

v Host name or IP address

v A colon (:) followed by the LDAP port number,

such as ″:389″ (This portion of the host name is

optional if the LDAP server is using the default

port.)

Example:

LDAP://SOME.LDAP.HOST:389

From the LDAP administrator

racfProfileName— The name of the RACF profile

that stores the following information when the

caller does not provide it:

v ldapHost

v bindDN

v bindPasswd

v domainDN

Example:

JOESDOMAIN

Note: This profile can be a profile defined in the

LDAP bind class, the IRR.EIM.DEFAULTS profile

in the LDAPBIND class, or the

IRR.PROXY.DEFAULTS profile in the FACILITY

class.

Defined by the RACF

administrator

Adding EIM domain and bind information for servers or

administrative users

To create a profile for LDAP binding information:

1. Perform the following steps if you are creating a profile in the LDAPBIND class:

a. To define the domain in the LDAPBIND class, enter:

RDEFINE LDAPBIND racfProfileName

EIM(DOMAINDN(domainDN))

PROXY(LDAPHOST(ldapHost)

BINDDN(bindDN) BINDPW(bindPasswd))

Notes:

1) OPTIONS(ENABLE) is the default value.

b. To update the user profile:

ADDUSER ASERVER EIM(LDAPPROF(racfProfileName))

Adding a system default using the IRR.EIM.DEFAULTS profile

1. If you are using the IRR.EIM.DEFAULTS profile in the LDAPBIND class, enter:

RDEFINE LDAPBIND IRR.EIM.DEFAULTS

PROXY(LDAPHOST(ldapHost)

BINDDN(bindDN) BINDPW(bindPasswd))

EIM(DOMAINDN(domainDN))

Note: OPTIONS(ENABLE) is the default value.

Chapter 6. Using RACF commands to set up and tailor EIM 69

Adding a system default using the IRR.PROXY.DEFAULTS profile

If no LDAPBIND class profile is associated with the caller’s user profile, the EIM

services look for the EIM domain’s LDAP URL and binding information in the

IRR.EIM.DEFAULTS profile in the LDAPBIND class followed by the

IRR.PROXY.DEFAULTS profile in the FACILITY class. For example, the following

command sets up the binding information in the IRR.PROXY.DEFAULTS profile in

the FACILITY class:

RDEFINE FACILITY IRR.PROXY.DEFAULTS

PROXY(LDAPHOST(LDAP://SOME.BIG.HOST:389)

BINDDN(’cn=Joes Admin,o=ibm,c=us’) BINDPW(secret))

EIM(DOMAINDN(’ibm-eimDomainName=Joes Domain,o=ibm,c=us’))

In this case, the domain’s LDAP URL is:

LDAP://SOME.BIG.HOST:389/ibm-eimDomainName=Joes Domain,o=ibm,c=us

Optionally setting up a registry name for your local RACF registry

Many of the EIM APIs require the name of a registry. For example, if you are

adding a registry to an EIM domain, you should know the name of the new registry.

However, you can use the lookup APIs (such as eimGetTargetFromSource,

eimGetIdentifierFromSource, and eimGetAssociatedIdentifiers) to convert:

1. A user ID to its equivalent RACF user ID

2. A local RACF user ID to an enterprise identifier

For such applications, you can eliminate the requirement for providing the RACF

registry name or its alias on the local system. You do this by giving a name to the

local RACF registry.

Steps for setting up lookups that do not need a registry name

Before you begin: You need to know the registry name:

 Table 27. Local registry name needed for creating RACF profiles

Information needed Where to get it Value

registryName —

The name of the RACF

registry.

Example:

Registry on POK System

EIM administrator

Perform the following to set up EIM so that you do not need a registry name on

every lookup. To define the local registry, enter the following RACF command in

which registryName is the name of the local registry:

RDEFINE FACILITY IRR.PROXY.DEFAULTS EIM(LOCALREGISTRY(registryName))

Note: EIM does not look for the registry name in an LDAPBIND class profile.

You can also configure the system with a kerberos registry name and an X.509

registry name. Issue the following commands to define default kerberos and X.509

registries for the configured EIM domain:

RALTER FACILITY IRR.PROXY.DEFAULTS EIM(KERBREGISTRY(registry name)

X509REGISTRY(registry name))

This access can be removed with the following command:

70 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

RALTER FACILITY IRR.PROXY.DEFAULTS EIM(NOKERBREGISTRY NOX509REGISTRY)

Note that these registry names need to be defined in the configured EIM domain.

For more information on defining a registry name, refer to “EIM registry definition”

on page 13.

Ongoing RACF administration

You might need to perform the following tasks as part of ongoing RACF

administration:

v “Disabling use of an EIM domain”

v “Using output from the RACF database unload utility and eimadmin to prime your

EIM domain with information”

Disabling use of an EIM domain

You might need to temporarily disable use of a RACF profile with a configured EIM

domain or a system-wide default EIM domain. You might want to do this if the EIM

information in a domain has been compromised or a security administrator wants to

stop the system or server from establishing new connections with the EIM domain.

You can use RACF commands to disable a domain without deleting EIM information

from the RACF profiles. When an EIM domain is disabled through a RACF profile,

existing connections to the domain complete their work. However, if an EIM service

is trying to establish a connection with such a domain, the EIM service does not

continue to look for an enabled domain.

Steps for disabling use of an EIM domain

Perform the following steps to disable a server from using the configured EIM

domain (This applies only to a server that has an ldapbind class profile specified for

its user ID):

1. If you want to disable a server (rather than a system) from using a configured

EIM domain, enter the following command:

RALTER LDAPBIND ldapbind_profile EIM(OPTIONS(DISABLE))

Note: No change is required to the user profile.

Tip: To disable a system-wide default EIM domain (rather than a server) that default

profiles use, enter one of the following commands:

RALTER FACILITY IRR.PROXY.DEFAULTS EIM(OPTIONS(DISABLE))

RALTER LDAPBIND IRR.EIM.DEFAULTS EIM(OPTIONS(DISABLE))

Using output from the RACF database unload utility and eimadmin to

prime your EIM domain with information

You can start to put EIM information (identifiers, RACF user IDs, and associations)

into your EIM domain by using output from DBUNLOAD and eimadmin.

For large installations, priming the EIM domain with identifiers and associations can

involve a lot of work. To make the task of getting started with EIM easier, the

eimadmin utility accepts as input a file containing a list of identifiers and

associations.

The section explores the steps for setting up an EIM domain based on user

information contained in a RACF database. The initial assumptions are that the EIM

Chapter 6. Using RACF commands to set up and tailor EIM 71

domain, World Wide Domain, has been created and a SAF system registry, SAF

user IDs, is defined in the domain. The ldap host name for the domain is

ldap://some.big.host. The EIM administrator uses the bind distinguished name of

cn=EIM Admin,o=My Company,c=US and the password is secret. The EIM

administrator bind distinguished name has been given EIM administrator authority

and can perform all of the steps below. A user with other types of EIM authority can

perform a subset of the steps below:

v EIM identifier administrator authority only works with identifiers and source and

target associations

v EIM registries administrator authority only works with target associations

v EIM registry-specific administrator authority for the SAF registry only works with

target associations in the SAF registry

1. Request from your RACF security administrator a file containing a copy of the

user profiles in the RACF database. The RACF security administrator can:

a. Run the database unload utility (IRRDBU00) to create the sequential file

b. Run the file through a sort program, such as DFSORT or DFSORT

ICETOOL to extract just the user profiles and desired fields. The User Basic

Data Record (0200) contains the user ID and the programmer name. In this

example, the programmer name is used for the EIM identifier.

The DFSORT ICETOOL Report format has a 1-4 character name (for example,

EIM). It contains the ICETOOL statements that control report format and record

summary information, such as SORT, COPY, DISPLAY, and OCCURS

statements. An example of a report format which can be used to extract RACF

user IDs and the programmer names associated with the user IDs is below:

Example:

**

* Name: EIM *

* *

* Find all user IDs in the RACF database and their name *

**

 COPY FROM(DBUDATA) TO(TEMP0001) USING(RACF)

 OCCURS FROM(TEMP0001) LIST(PRINT) -

 TITLE(’user IDs and Names’) -

 ON(10,8,CH) HEADER(’USER ID’) -

 ON(79,20,CH) HEADER(’Name’)

The record selection criteria is as follows:

v The name of the member containing the record selection criteria is the report

member name followed by CNTL (such as EIMCNTL).

v Record selection is performed using DFSORT control statements, such as

SORT and INCLUDE.

v The SORT command is used to select and sort records.

v The INCLUDE command is used to specify conditions required for records to

appear in the report.

The following is an example of the record selection criteria that could be used.

In this report, we are including only User Base records (record type 0200) which

have the RACF user ID and the programmer name. The selection criteria allows

records for the special RACF user IDs, irrcerta, irrmulti, and irrsitec, to remain

undisclosed in the final report.

SORT FIELDS=(10,8,CH,A)

INCLUDE COND=(5,4,CH,EQ,C’0200’,AND,

 (10,8,CH,NE,C’irrcerta’,AND,

Ongoing RACF administration

72 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

10,8,CH,NE,C’irrmulti’,AND,

 10,8,CH,NE,C’irrsitec’))

 10,7,CH,NE,C’IBMUSER’,AND,

OPTION VLSHRT

To use the RACFICE procedure to generate the report:

//jobname JOB Job card...

// SET DBUDATA=USER01.TEST.IRRDBU00

//stepname EXEC RACFICE,REPORT=EIM

Result: The output from the utility looks like this:

User ID Name

-------------------- --------------------

ANN ANN J. AUSTIN

CHRIS CHRISTINE IRVING

DENICE DENICE GARDNER

DIANA DIANA MACMILLIAN

ERIC ERIC D. ADAMS

JAY JASON SWIFT

MAURA MAURA FISHER

OMAR OMAR ZACHARY

PEGGY PEGGY B. WOLF

RANDY RANDY BRAUTIGAN

RICH RICH CLANCY

ROSS ROSS SIMPSON

SCOTT SCOTT SMYTHE

SHOZAB SHOZAB SYED

SHRUTI SHRUTI MODI

TRACY TRACY ROWLINGS

TERRY TERRY HAMMER

VIVIAN VIVIAN BRONTE

WILLY WILLIAM TROTSKY

Tips:

v z/OS Security Server RACF Security Administrator’s Guide contains

instructions on how to run the database unload utility and use the sort

programs.

2. When you receive the report from the security administrator, you should move it

to a file in the hierarchical file system (HFS).

3. Add a eimadmin utility ″label line″ to the file containing user profiles. You can

use any one of the editors available from the OMVS shell (such as OEDIT).

The following is an example of the updated file, racfUsers.txt with a label line

added and the DFSORT column headers commented out.

Tips Any user IDs that should not go into the EIM domain, such as user IDs

belonging to servers, can also be commented out.

#User ID Name

#------------------- --------------------

UN ; IU ;

ANN ANN J. AUSTIN

CHRIS CHRISTINE IRVING

DENICE DENICE GARDNER

DIANA DIANA MACMILLIAN

ERIC ERIC D. ADAMS

JAY JASON SWIFT

MAURA MAURA FISHER

OMAR OMAR ZACHARY

PEGGY PEGGY B. WOLF

RANDY RANDY BRAUTIGAN

RICH RICH CLANCY

ROSS ROSS SIMPSON

SCOTT SCOTT SMYTHE

SHOZAB SHOZAB SYED

SHRUTI SHRUTI MODI

Ongoing RACF administration

Chapter 6. Using RACF commands to set up and tailor EIM 73

TERRY TERRY HAMMER

TRACY TRACY ROWLINGS

VIVIAN VIVIAN BRONTE

WILLY WILLIAM TROTSKY

4. Add identifiers and list the results using the eimadmin shell command:

eimadmin

-aI

-d "ibm-eimDomainName=World Wide Domain,o=My Company,c=US"

-h ldap://some.big.host

-b "cn=EIM Admin,o=My Company,c=US"

-w secret <racfUsers.txt

5. To list the identifiers added above, issue:

eimadmin

-lI

-d "ibm-eimDomainName=World Wide Domain,o=My Company,c=US"

-h ldap://some.big.host

-b "cn=EIM Admin,o=My Company,c=US"

-w secret <racfUsers.txt

6. Create source and target associations between the identifiers and the user IDs

in RACF. Because the file racfUsers.txt contains a label line that identifies user

IDs as well as unique identifier names, it can be used to create associations:

eimadmin

-aA

-t source

-t target

-r"SAF user IDs"

-d "ibm-eimDomainName=World Wide Domain,o=My Company,c=US"

-h ldap://some.big.host

-b "cn=EIM Admin,o=My Company,c=US"

-w secret <racfUsers.txt

7. To list the associations added above:

eimadmin

-lA

-d "ibm-eimDomainName=World Wide Domain,o=My Company,c=US"

-h ldap://some.big.host

-b "cn=EIM Admin,o=My Company,c=US"

-w secret <racfUsers.txt

8. The following eimadmin commands can be used to give EIM Mapping

Operations authority to each of the users (identified in the file

racfUsersDNs.txt):

eimadmin

-aC

-c MAPPING

-d "ibm-eimDomainName=World Wide Domain,o=My Company,c=US"

-f DN

-h ldap://some.big.host

-b "cn=EIM Admin,o=My Company,c=US"

-w secret <racfUsersDNs.txt

To list the accesses that have been granted, issue:

eimadmin

-lC

-c MAPPING

-d "ibm-eimDomainName=World Wide Domain,o=My Company,c=US"

-h ldap://some.big.host

-b "cn=EIM Admin,o=My Company,c=US"

-w secret <racfUsersDNs.txt

Tip: At a minimum, a user who is looking for a mapping in the EIM domain

needs to have EIM mapping operations authority. In most cases, the application

has one set of credentials for connect with an EIM domain, and those

Ongoing RACF administration

74 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

credentials are shared by all users. However, if individual access is needed,

then a bind distinguished name needs to be defined for each of the users and

given EIM mapping operations authority.

Suppose the file racfUsersDNs.txt contains this list of bind distinguished names

that were defined to the LDAP server containing the EIM domain controller and

an eimadmin label line:

CU ;

cn=Ann J. Austin,o=My Company,c=US

cn=Chrisine Irving,o=My Company,c=US

cn=Denice Gardener,o=My Company,c=US

cn=Diana MacMillian,o=My Company,c=US

cn=Eric D. Adams,o=My Company,c=US

cn=Jason Swift,o=My Company,c=US

cn=Maura Fisher,o=My Company,c=US

cn=Omar Zachary,o=My Company,c=US

cn=Peggy B. Wolf,o=My Company,c=US

cn=Randy Brautigan,o=My Company,c=US

cn=Rich Clancy,o=My Company,c=US

cn=Ross Simpson,o=My Company,c=US

cn=Scott Smythe,o=My Company,c=US

cn=Shozab Syed,o=My Company,c=US

cn=Shruti Modi,o=My Company,c=US

cn=Terry Hammer,o=My Company,c=US

cn=Tracy Rowlings,o=My Company,c=US

cn=Vivian Bronte,o=My Company,c=US

cn=William Trotsky,o=My Company,c=US

Ongoing RACF administration

Chapter 6. Using RACF commands to set up and tailor EIM 75

Ongoing RACF administration

76 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Chapter 7. Developing applications

The z/OS UNIX programmer codes customer EIM lookups and administrative

applications, integrating calls to the EIM APIs within these applications. The EIM

APIs are implemented as ″C″ programming interfaces.

This chapter explores:

v “Writing EIM applications”

– “Default registry names”

– “Defining private user registry types in EIM”

- “Define a private user registry type in EIM”

v “Building an EIM application” on page 79

– “C/C++ Compile considerations” on page 79

– “C/C++ Link-edit considerations” on page 80

v “Preparing to run an EIM application” on page 80

v “APIs for retrieving the LDAP URL and binding information” on page 83

v “Determining why a mapping is not returned” on page 83

Writing EIM applications

Default registry names

Many of the EIM APIs require the specification of the name of a registry. For

example, if you are adding a registry to an EIM domain, you should know the name

of the new registry being used. However, you might use the lookup APIs (such as

eimGetTargetFromSource, eimGetTargetFromIdentifier, and

eimGetAssociatedIdentifiers) to convert:

v A user ID to its equivalent RACF user ID

v A local RACF user ID to an enterprise identifier

Tip: For such applications, you can eliminate the requirement for providing the

RACF registry name or its alias on the local system. This is done by storing a name

for the local RACF registry in the IRR.PROXY.DEFAULTS profile in the FACILITY

class.

Defining private user registry types in EIM

Define a private user registry type in EIM

To define a user registry type that EIM is not predefined to recognize, you must

specify the registry type in the form of ObjectIdentifier-normalization, where

ObjectIdentifier is a dotted decimal object identifier (OID), such as 1.2.3.4.5.6.7,

and normalization is either the value caseExact or the value caseIgnore.

If you need a private OID for use only within your enterprise, you can pick any

arbitrary number not already in use. However, private OIDs that you want to use

outside your enterprise must be obtained from legitimate OID registration

authorities. Doing so ensures that you create and use unique OIDs which helps you

avoid potential OID conflicts with OIDs created by other organizations.

There are two ways of obtaining OIDs:

© Copyright IBM Corp. 2002, 2008 77

1. Registering your OIDs with an authority is a good choice, for example, when

you need a small number of fixed OIDs to represent information. For example,

these OIDs might represent certificate policies for users in your enterprise.

2. Obtaining an arc assignment, which is a dotted decimal object identifier range

assignment, is a good choice if you need a large number of OIDs, or if your OID

assignments are subject to change. The arc assignment consists of the

beginning dotted decimal numbers from which you must base your

ObjectIdentifier. For example, the arc assignment could be 1.2.3.4.5.. You

could then create OIDs by adding to this basic arc. For example, you could

create OIDs in the form 1.2.3.4.5.x.x.x).

Tip: You can learn more about registering your OIDs with a registration authority

by reviewing these Internet resources:

v ANSI is the registration authority for the United States for organization names

under the global registration process established by ISO and ITU. A fact

sheet with links to an application form is located at the ANSI Web site:

http://web.ansi.org/public/services/reg_org.html

Note: The ANSI OID arc for organizations is 2.16.840.1. ANSI charges a fee

for OID arc assignments. It takes approximately two weeks to receive

the assigned OID arc from ANSI. ANSI will assign a number

(NEWNUM), creating a new OID arc: 2.16.840.1.NEWNUM.

v In most countries or regions, the national standards association maintains an

OID registry. As with the ANSI arc, these are generally arcs assigned under

the OID 2.16. It might take some investigation to find the OID authority for a

particular country or region. The addresses for ISO national member bodies

can be found at:

http://www.iso.ch/addresse/membodies.html

The information includes a postal address and electronic mail, and in many

cases a Web site is specified as well.

v Another possible starting point is the International Register of ISO DCC

Network Service Access Point (NSAP) schemes. The registry for schemes

can be obtained at:

http://www.fei.org.uk/fei/dcc-nsap.htm

This Web site currently lists contact information for thirteen naming

authorities, some of which also assign OIDs.

v The Internet Assigned Numbers Authority (IANA) assigns private enterprise

numbers, which are OIDs, in the arc 1.3.6.1.4.1. IANA has assigned arcs to

over 7,500 companies to date. The application page is located at:

http://www.iana.org/forms.html

It can be found under ″Private Enterprise Numbers″. The IANA OID is free

and is usually received in about one week. IANA assigns a number

(NEWNUM), so the new OID arc will be 1.3.6.1.4.1.NEWNUM.

v The U.S. Federal Government maintains the Computer Security Objects

Registry (CSOR). The CSOR is the naming authority for the arc

2.16.840.1.101.3, and is currently registering objects for security labels,

cryptographic algorithms, and certificate policies. The certificate policy OIDs

are defined in the arc 2.16.840.1.101.3.2.1. The CSOR provides policy

OIDs to agencies of the United States Federal Government. For more

information about the CSOR, refer to:

http://csrc.nist.gov/csor/

Developing applications

78 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

http://www.ibm.com/systems/z/advantages/security/
http://www.ibm.com/systems/z/advantages/security/
http://www.ibm.com/systems/z/advantages/security/
http://www.ibm.com/systems/z/advantages/security/
http://www.ibm.com/systems/z/advantages/security/

For more information on OIDs for certificate policies, see http://csrc.nist.gov/
csor/pkireg.htm.

Building an EIM application

Any user of an EIM application (including eimadmin) needs a z/OS UNIX System

Services UID and GID assigned to them. See z/OS UNIX System Services Planning

for details on how to do this.

This section explores:

v “C/C++ Compile considerations”

v “C/C++ Link-edit considerations” on page 80

Note: The EIM programming interface is provided in a set of C/C++ functions in the

EIM DLL and a pair of Java jar files. The DLL is loaded at program run time

so that calls to the functions in the interface can be made. In order to

compile and link-edit a C/C++ program that uses the EIM API, use the

following guidelines.

C/C++ Compile considerations

Put the following include statement in all C or C++ source files that make calls to

the EIM programming interface or use EIM data structures.

#include <eim.h>

Note: If defaults were used during EIM installation, the eim.h file is located in the

/usr/lpp/eim/include directory. The eim.h file has been symbolically linked

in the /usr/include directory. If EIM was not installed in the default location,

you might need to specify the directory where the compiler is to find the

eim.h file with the -I parameter.

Tip: Specify -D_EIM_EXT on the compile of the source files that include eim.h. This

ensures full support for the errno values defined for EIM and that they are proper by

defined for your application’s use. Additionally, the Language Environment library

level must be at z/OS release 4 or above. To set the Language Envirnoment library

level to the z/OS Version 1 Release 4 level, specify target(0x41040000). (To add

this to the C/C++ command, specify -Wc,target\(0x41040000\)).

When compiling a program that makes EIM API calls, be sure to specify the DLL

option to the compiler. (-Wc,dll when using the c89/cc/c++ commands)

Tip: Ensure your application has POSIX(ON) specified so it can use the EIM APIs.

The values returned by the EIM APIs are standard POSIX errnos with five additions.

These errnos, including the additions, can be used as input to the strerror() or

perror() functions:

v EBADDATA = Data is not valid

v EUNKNOWN = Unknown system state

v ENOTSUP = Operation not supported

v EBADNAME = The object name specified is not correct

v ENOTSAFE = The function is not allowed

Refer to “eimErr2String” on page 241 for more information.

Developing applications

Chapter 7. Developing applications 79

C/C++ Link-edit considerations

Tip: When link-editing, be sure to specify the EIM ″exports″ file in the set of files to

be link-edited with the program.

The EIM export file (eim.x) is located in the library directory of the EIM install

directory, which is /usr/lpp/eim/lib by default. For convenience, a symbolic link to

this file has been created in the /usr/lib directory. If the default directory was used

during EIM installation, the export file could be specified as /usr/lib/eim.x or

/usr/lpp/eim/lib/eim.x.

Preparing to run an EIM application

Tip: When running an EIM application, be sure that the EIM DLL is accessible by

ensuring the LIBPATH environment variable includes /usr/lib. Be sure that the

directory your programs are located in are in the PATH environment variable.

Since the EIM message catalogs are symbolically linked in the /usr/lib/nls/msg

directories, it should not be necessary to update NLSPATH.

Note: previous releases of z/OS required programs that used the EIM APIs to be

APF-authorized. This requirement no longer exists. This means that you must

remove the APF-authorization extended attribute for each existing EIM application

program (new applications you add for this release are not affected). This attribute

is removed by using the extattr –a command.

For example extattr –a eimprog would remove the APF-authorization bit for the

program eimprog in the current directory. For more information on the extattr

command, refer to z/OS UNIX System Services Command Reference or z/OS UNIX

System Services Planning.

Accessing RACF profile checks

If your C/C++ or Java application is retrieving configuration information from RACF

profiles, for example:

v the default EIM domain dn, ldap host, bind dn, and bind password

v the default registry names

then the RACF user ID of the application callers may need authority to SAF

services that allow the information to be retrieved from the RACF database.

The following table lists the access requirements for the EIM APIs when they need

to obtain information configuration information from a RACF profile.

Developing applications

80 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 28. EIM API access requirements

EIM C/C++ API

SAF Callable

service used by the

EIM APIs

Authorization requirements for the

calling application.

eimCreateHandle,

eimGetAssociatedIdentifiers

eimGetTargetFromIdentifier

eimGetTargetFromSource

eimRetrieveConfiguration

R_GetInfo The calling application can be running

in system key or supervisor state or

one of the following:

v The RACF user ID of the caller’s

address space has READ authority

to the BPX.SERVER profile in the

FACILITY class

v The current RACF user ID has

READ authority to the

IRR.RGETINFO.EIM profile in the

FACILITY class

The FACILITY class must be active

and RACLISTed before unauthorized

(problem program state and keys) will

be granted the authority to use this

SAF service.

eimConnect,

eimConnectToMaster

R_dcekey The calling application can be running

in system key or supervisor state or

one of the following:

v The RACF user ID of the caller’s

address space has READ access

to the BPX.SERVER profile in the

FACILITY class

v The current RACF user ID has

READ authority to the

IRR.RDCEKEY profile in the

FACILITY class

Applications that are not authorized

(problem program state and keys)

must be program controlled (extattr

+p), the address space must be clean

and the FACILITY class must be

active and RACLISTed before the

application will be granted authority to

use this SAF service.

Developing applications

Chapter 7. Developing applications 81

Table 28. EIM API access requirements (continued)

EIM C/C++ API

SAF Callable

service used by the

EIM APIs

Authorization requirements for the

calling application.

eimSetConfigurationExt R_GetInfo

R_admin

The calling application can be running

in system key or supervisor state or

one of the following:

v The RACF user ID of the caller’s

address space has READ authority

to the BPX.SERVER profile in the

FACILITY class

v The current RACF user ID has

READ authority to the

IRR.RGETINFO.EIM profile in the

FACILITY class

For applications that are not

authorized (problem program state

and keys), the current RACF user ID

must satisfy the following

requirements:

v Have READ authority to the

following profiles in the FACILITY

class:

– IRR.RADMIN.ALTUSER

– IRR.RADMIN.RDEFINE

– IRR.RADMIN.RALTER

– IRR.RADMIN.RDELETE

v Have authority to issue the

following commands:

– ALTUSER

– RALTER

– RDEFINE

– RDELETE

The FACILITY class must be active

and RACLISTed before the

application will be granted authority to

use this SAF service

Special considerations for applications that will be shared between

different releases of z/OS

Prior to z/OS V1R7, the EIM application needed to be APF authorized. For z/OS

V1R7 or later, the application should not be APF authorized. The one exception is

when the application is shared between a down level system and a z/OS V1R7 or

later system. The application must remain APF authorized in order for it to work on

the down level system. For more details on APF authorization, see “Preparing to

run an EIM application” on page 80.

Developing applications

82 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

APIs for retrieving the LDAP URL and binding information

EIM APIs, eimCreateHandle, eimConnect, and eimConnectToMaster, use SAF APIs

to retrieve the domain’s LDAP URL and binding information from RACF profiles

when the caller does not provide them. The order of search for the domain and bind

information is:

1. As input parameters on the call to the EIM API

2. In profiles as follows:

a. LDAPBIND profile named in the EIM segment of the caller’s USER profile

b. IRR.EIM.DEFAULTS profile in the LDAPBIND class

c. IRR.PROXY.DEFAULTS profile in the FACILITY class

It is reasonable for domain APIs to have access to the domain’s LDAP URL and

binding information because only:

v The LDAP administrator can create a domain

v A limited number of users have the authority to change, delete or list domain

information

The eimRetrieveConfiguration API can also retrieve configuration information, from

a specific profile or the current system settings. For more information see

“eimRetrieveConfiguration” on page 377.

Tip: Applications, servers, or operating systems can use other APIs (such as

registry, identifier, association, access control, and lookup APIs) that should obtain

the domain’s LDAP URL and binding information from a source the security

administrator controls.

Determining why a mapping is not returned

If your application is up and running, it should be able to connect to the EIM domain

controller. However, if it does not return expected results for the EIM API, the

following could be happening:

v The EIM information you are trying to retrieve is not defined in the EIM domain

v The end user does not have the correct level of authority to the information

Tip: Some things the EIM administrator can consider for investigation:

1. List the EIM information to verify that the EIM information you are looking for is

defined.

2. Verify that the user you are connecting with has the required level of authority

for the API you are using.

Developing applications

Chapter 7. Developing applications 83

Developing applications

84 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Chapter 8. Messages

Enterprise Identity Mapping (EIM) on z/OS uses message catalogs to store error

strings and messages. The error strings explain why a particular return code (or

errno) is returned by an EIM API. The messages are issued by the eimadmin utility.

Message catalogs makes it easier for software to provide versions of error strings

and messages in languages other than English.

All of the messages in this section with the exception of the ITY4xxx messages are

error strings. The error strings are in the format that is returned by a catgets()

function.

An error string or message has the following format:

ITYnnnn text

nnnn

The message ID number in the message catalog.

The text of an error string might contain an XPG4 conversion specification for a

substitution value. A conversion specification has the following format:

%n$x

% The start of the conversion specification

n The nth argument after the format-string of an fprintf, sprintf, or printf function

$ A delimiter

x The kind of variable (for example, s=string)

More details on XPG4 conversion specifications and their use can be found in z/OS

XL C/C++ Run-Time Library Reference.

The error message IDs in the EIM message catalog are divided into ranges based

by function:

ITY0xxx

Error strings that an EIM API returns (across iSeries, zSeries, pSeries, and

xSeries platforms)

ITY3xxx

Identity cache error messages

ITY4xxx

Messages that the eimadmin utility issues

ITY6xxx

z/OS-specific error strings

The application programer has two options for handling error strings in an EIM

application:

v Retrieve the error string from the message catalog, format the error string into a

message, and print the message to the screen or error log.

v Use the eimErr2String API, which retrieves the error string and formats it into a

message that can be printed using one of the C or C++ print functions. Note that

this only works with EIM error messages; java error messages, such as those

from identity cache, are excluded from this function.

© Copyright IBM Corp. 2002, 2008 85

An application that works directly with the message catalog needs to do the

following:

1. Open the message catalog using the catopen function.

2. Read the error string from the message catalog using the catgets function.

3. Format the message and fill in any substitution values EIM returns by using one

of the fprintf family of functions— fprintf(), sprintf(), printf().

4. Close the message catalog using the catclose function

These functions require the message catalog set number and message ID, which

are contained in the EimRC return code parameter on the EIM APIs. See the z/OS

XL C/C++ Run-Time Library Reference for details on how to use these functions.

The eimErr2String API simplifies the task of creating the message by performing

this processing for you.

ITY0001 Insufficient access to EIM data.

Symbolic Identifier (value): EIMERR_ACCESS (1)

Explanation: The bind distinguished name did not

have sufficient authority to access the desired EIM data.

LDAP returned LDAP_INSUFFICIENT_ACCESS to the

requested operation.

Programmer response: Verify the bind distinguished

name is a member of the EIM access control group

required for the API. The bind distinguished name can

be obtained from one of four places:

1. It can be specified on a call to the eimConnect or

eimConnectToMaster API.

2. If it is not specified on the API, it can be retrieved

from the LDAPBIND class profile that is associated

with the caller’s user ID.

3. If it is neither specified on the API nor retrieved from

the LDABIND class profile associated with the caller,

it can be retrieved from the IRR.EIM.DEFAULTS

profile in the LDAPBIND class

4. If it is in none of the above places it can be in the

IRR.PROXY.DEFAULTS profile in the FACILITY

class.

System action: The called function fails.

ITY0002 Access type is not valid.

Symbolic Identifier (value):

 EIMERR_ACCESS_TYPE_INVAL (2)

Explanation: The value specified for the access type

parameter is not a valid access type.

Programmer response: Correct the errror and try the

service again.

System action: The called function fails.

ITY0003 Access user type is not valid.

Symbolic Identifier (value):

 EIMERR_ACCESS_USERTYPE_INVAL (3)

Explanation: The value specified for the user access

type parameter is either not a valid access type or not

supported on this platform.

Programmer response: Check the documentation for

the EIM API and verify the user access type is

supported. If the user access type is not supported or

an incorrect value was specified for the access type,

correct the program and try the service again.

System action: The called function fails.

ITY0004 Association type is not valid.

Symbolic Identifier (value):

 EIMERR_ASSOC_TYPE_INVAL (4)

Explanation: The value specified for the association

type parameter is not a valid type of association.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY0005 Attribute name is not valid.

Symbolic Identifier (value): EIMERR_ATTR_INVAL

(5)

Explanation: The value specified for the attribute

parameter is either not a valid attribute or not supported

on this platform.

Programmer response: Check the documentation for

the EIM API and verify the attribute is supported. If the

attribute is not supported or an incorrect value was

specified for the attribute, correct the program and try

the service again.

System action: The called function fails.

ITY0006 Attribute not supported.

Symbolic Identifier (value):

 EIMERR_ATTR_NOTSUPP (6)

Explanation: The value specified for the handle

86 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

attribute is either not a valid attribute or not supported

on this platform.

Programmer response: Check the documentation for

the EIM API and verify the attribute is supported. If the

attribute is not supported or an incorrect value was

specified for the attribute, correct the program and try

the service again.

System action: The called function fails.

ITY0008 CCSID is outside of valid range or

CCSID is not supported.

Symbolic Identifier (value): EIMERR_CCSID_INVAL

(8)

Explanation: Not returned on EIM for z/OS.

Programmer response: None.

System action: None.

ITY0009 This change type is not valid with the

requested attribute.

Symbolic Identifier (value):

 EIMERR_CHGTYPE_INVAL (9)

Explanation: The value specified for the attribute

change type is not a valid change type value.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY0010 Length of EimConfig is not valid.

Symbolic Identifier (value): EIMERR_CONFIG_SIZE

(10)

Explanation: Not returned on EIM for z/OS.

Programmer response: None.

System action: None.

ITY0011 Connection already exists.

Symbolic Identifier (value): EIMERR_CONN (11)

Explanation: An attempt was made to use an EIM

handle that already has a connection established with

an EIM domain.

Programmer response: Correct the error and try the

service again.

System action: The invoked function fails.

ITY0012 Connection type is not supported.

Symbolic Identifier (value):

 EIMERR_CONN_NOTSUPP (12)

Explanation: The value specified for the connection

type is either not a valid connection type or not

supported on this platform.

Programmer response: Check the documentation for

the EIM API and verify the connection type is supported.

If the connection type is not supported or an incorrect

value was specified for the attribute, correct the

program and try the service again.

System action: The called function fails.

ITY0013 Error occurred when converting data

between code pages.

Symbolic Identifier (value):

 EIMERR_DATA_CONVERSION (13)

Explanation: Not returned on EIM for z/OS.

Programmer response: None.

System action: None.

ITY0014 EIM domain entry already exists in

EIM.

Symbolic Identifier (value):

 EIMERR_DOMAIN_EXISTS (14)

Explanation: The EIM domain distinguished name

specified in the ldapURL parameter is defined on the

LDAP host.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY0015 Cannot delete a domain when it has

registries or identifiers.

Symbolic Identifier (value):

 EIMERR_DOMAIN_NOTEMPTY (15)

Explanation: The specified EIM domain could not be

deleted because it contains identifiers, registry users, or

associations.

Programmer response: Delete the identifiers, registry

users, or associations and try the service again.

System action: The called function fails.

ITY0016 Length of EimList is not valid. EimList

must be at least 20 bytes in length.

Symbolic Identifier (value): EIMERR_EIMLIST_SIZE

(16)

Explanation: The value specified for the length of the

EimList structure parameter is fewer than 20 bytes.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

Chapter 8. Messages 87

ITY0017 EimHandle is not valid.

Symbolic Identifier (value):

 EIMERR_HANDLE_INVAL (17)

Explanation: The EIM handle does not contain the

expected data and cannot be used with any EIM

service.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY0018 NameInUseAction is not valid.

Symbolic Identifier (value):

 EIMERR_IDACTION_INVAL (18)

Explanation: The value specified for the name in use

parameter is not valid.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY0019 EIM identifier already exists by this

name.

Symbolic Identifier (value):

 EIMERR_IDENTIFIER_EXISTS (19)

Explanation: The identifier could not be added

because another identifier exists in the domain with the

same unique name.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY0020 More than one EIM identifier was found

that matches the requested identifier

name.

Symbolic Identifier (value):

 EIMERR_IDNAME_AMBIGUOUS (20)

Explanation: The eimListIdentifier or

eimRemoveIdentifier service found more than one entry

that matches the specified identifier name. This can

occur when the non-unique name is used for the name

parameter.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY0021 A restricted character was used in the

object name.

Symbolic Identifier (value): EIMERR_CHAR_INVAL

(21)

Explanation: The EIM API detected one of the

following characters in the name:

, = + > < # ; \ *

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY00022 The protect parameter in

EimSimpleConnectInfo is not valid.

Symbolic Identifier (value):

 EIMERR_PROTECT_INVAL (22)

Explanation: The value specified for the password

protection type is either not a valid protection type or

not supported on this platform.

Programmer response: Check the documentation for

the EIM API and verify the password protection type is

supported. If the password protection type is not

supported or an incorrect value was specified, correct

the program and try the service again.

System action: The called function fails.

ITY0023 Unexpected LDAP error. %1$s

Symbolic Identifier (value): EIMERR_LDAP_ERR

(23)

Explanation: An unexpected LDAP error occurred.

The eimrc parameter contains the name of the LDAP

service that returned an error and additional diagnostic

information from the LDAP client and from the LDAP

server, if available. The substitution text is:

ldap client API name - ldap error code:

additional error information

Programmer response: Check the LDAP client

publication for information on the failing LDAP service

and the returned error values. Also check the EIM API

documentation for information on the service being

performed. Correct the problem and try the service

again.

System action: The called function fails.

ITY0024 EIM domain not found or insufficient

access to EIM data.

Symbolic Identifier (value): EIMERR_NODOMAIN

(24)

Explanation: The domain name in the ldapURL

parameter does not exist or the bind distinguished name

does not have authority to access the EIM data.

Programmer response: Verify the bind distinguished

name is a member of an EIM access control group that

the EIM API requires. Verify the domain exists in the

LDAP directory service. Correct the problem and try the

service again.

System action: The called function fails.

88 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

ITY0025 EIM identifier not found or insufficient

access to EIM data.

Symbolic Identifier (value): EIMERR_NOIDENTIFIER

(25)

Explanation: The EIM identifier does not exist or the

bind distinguished name used to establish a connection

with the EIM domain does not have authority to access

the EIM data.

Programmer response: Verify the bind distinguished

name is a member of an EIM access control group that

the EIM API requires. Verify the identifier exists in the

LDAP directory service. Correct the problem and try the

service again.

System action: The called function fails.

ITY0026 Unable to allocate internal system

object.

Symbolic Identifier (value): EIMERR_NOLOCK (26)

Explanation: Not returned by EIM on z/OS

Programmer response: None.

System action: None.

ITY0027 No memory available. Unable to

allocate required space.

Symbolic Identifier (value): EIMERR_NOMEM (27)

Explanation: The EIM API was unable to memory

allocate (malloc) storage.

Programmer response: Isolate the reason why the

program ran out of storage, correct the problem and try

the service again.

System action: The called function fails.

ITY0028 EIM registry not found or insufficient

access to EIM data.

Symbolic Identifier (value): EIMERR_NOREG (28)

Explanation: The EIM API could not find the specified

registry in the domain or the bind distinguished name

did not have access to the registry.

Programmer response: Verify the correct registry

name and domain is specified. Verify the bind

distinguished name is a member of an access control

group that the EIM API requires. Correct the problem

and try the service again.

System action: The called function fails.

ITY0029 Registry user not found or insufficient

access to EIM data.

Symbolic Identifier (value): EIMERR_NOREGUSER

(29)

Explanation: The EIM API could not find the specified

registry user in the domain or the bind distinguished

name did not have access to the registry.

Programmer response: Verify the correct registry

user, registry name and domain is specified. Verify the

bind distinguished name is a member of an access

control group that an EIM API requires. Correct the

problem and try the service again.

System action: The called function fails.

ITY0030 EIM environment is not configured.

Symbolic Identifier (value): EIMERR_NOTCONFIG

(30)

Explanation: The EIM API could not find the ldapURL

or the registry name in a RACF profile.

Programmer response: If the EIM API requires an

ldapURL and the application is using EIM configuration

information associated with the caller’s user profile,

verify that the EIM segment for the user profile has the

name of a profile in the LDAPBIND class. Verify the

LDAPBIND class has a host name in the LDAPHOST

field of the PROXY segment and a domain

distinguished name (DN) in the DOMAINDN field of the

EIM segment. If the application is using the system

defaults from the IRR.EIM.DEFAULTS LDAPBIND clss

profile or the IRR.PROXY.DEFAULTS FACILITY class

profile, verify the LDAP host name and EIM domain

distinguished name are defined. If the EIM API requires

the system default registry name, then verify the

IRR.PROXY.DEFAULTS FACILITY class profile contains

a registry name in the LOCALREG field of the EIM

segment. Correct the problem and try the service again.

System action: The called function fails.

ITY0031 Not connected to LDAP.

Symbolic Identifier (value): EIMERR_NOT_CONN

(31)

Explanation: The EIM API requires an EIM handle

that is connected to an EIM domain.

Programmer response: Issue an eimConnect or

eimConnect service for the EIM handle and try the

service again.

System action: The called function fails.

Chapter 8. Messages 89

ITY0032 The system is not configured to

connect to a secure port. Connection

type of EIM_CLIENT_AUTHENTICATION

is not valid.

Symbolic Identifier (value):

 EIMERR_NOT_SECURE(32)

Explanation: The URL for the EIM domain controller

does not begin with ldaps.

Programmer response: Verify the URL is correct and

that the correct option is specified on the EIM API, then

try the service again.

System action: The called function fails.

ITY0033 System registry not found.

Symbolic Identifier (value): EIMERR_NO_SYSREG

(33)

Explanation: The eimAddApplicationRegistry API

requires the name of a system registry. The registry

does not exist in the EIM domain or the bind

distinguished name (DN) is not a member of one of the

access control groups that the

eimAddApplicationRegistry API requires.

Programmer response: Verify the correct system

registry name is provided. Verify the bind disiinguished

name is a member of one of the access control groups

that the eimAddApplication registry requires. Correct the

problem and try the service again.

System action: The called function fails.

ITY0034 Missing required parameter.

Symbolic Identifier (value): EIMERR_PARM_REQ

(34)

Explanation: A required parameter for the EIM API is

missing.

Programmer response: Check the EIM API

documentation, identify the missing parameter, correct

the problem, and try the service again.

System action: The called function fails.

ITY0035 Pointer parameter is not valid.

Symbolic Identifier (value): EIMERR_PTR_INVAL

(35)

Explanation: Not returned by EIM on z/OS

Programmer response: None.

System action: None.

ITY0036 LDAP connection is for read only.

Symbolic Identifier (value): EIMERR_READ_ONLY

(36)

Explanation: The EIM API tried to add, delete, or

change information in an EIM domain, but the EIM

handle is connected to an LDAP server that is read

only.

Programmer response: Create a new handle that is

connected to a master LDAP server and try the service

again. .

System action: The invoked function fails

ITY0037 Registry entry already exists in EIM.

Symbolic Identifier (value):

 EIMERR_REGISTRY_EXISTS (37)

Explanation: The EIM API tried to add a system or

application registry to an EIM domain and a registry with

the same name is defined in the domain.

Programmer response: Create a new handle that is

connected to a master LDAP server and try the service

again.

System action: The called function fails.

ITY0038 Requested registry kind is not valid.

Symbolic Identifier (value):

 EIMERR_REGKIND_INVAL (38)

Explanation: The value specified for the registry kind

is not a valid registry kind.

Programmer response: Check the documentation for

the EIM API, correct the problem, and try the service

again.

System action: The called function fails.

ITY0039 Local registry name is too large.

Symbolic Identifier (value):

 EIMERR_REGNAME_SIZE (39)

Explanation: This is not returned by EIM on z/OS.

Programmer response: None.

System action: None.

ITY0040 Cannot delete a registry when an

application registry has this system

registry defined.

Symbolic Identifier (value):

 EIMERR_REG_NOTEMPTY (40)

Explanation: The specified EIM registry could not be

deleted because an application registry is defined for

this system registry.

90 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Programmer response: Delete the application registry

and try the service again.

System action: The called function fails.

ITY0041 Unexpected error accessing parameter.

Symbolic Identifier (value): EIMERR_SPACE (41)

Explanation: This is not returned by EIM on z/OS.

Programmer response: None.

System action: None.

ITY0042 EimSSLInfo is required.

Symbolic Identifier (value): EIMERR_SSL_REQ (42)

Explanation: The EIM domain controller URL begins

with ldaps, but the SSL information was not specified as

a parameter to the EIM API.

Programmer response: Correct the EIM domain

controller URL or parameter list for the EIM API and try

the service again.

System action: The called function fails.

ITY0043 Length of unique name is not valid.

Symbolic Identifier (value): EIMERR_UNIQUE_SIZE

(43)

Explanation: The length of the uniqueName is not 20

bytes longer than the length of the identifier.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY0044 Unknown exception or unknown

system state.

Symbolic Identifier (value): EIMERR_UNKNOWN

(44)

Explanation: Not returned by EIM on z/OS

Programmer response: None.

System action: None.

ITY0045 URL has no distinguished name

(required).

Symbolic Identifier (value): EIMERR_URL_NODN

(45)

Explanation: The value specified for the ldapURL

parameter does not contain a distinguished name.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY0046 URL has no domain (required).

Symbolic Identifier (value):

 EIMERR_URL_NODOMAIN (46)

Explanation: The distinguished name portion of the

ldapURL parameter does not begin with

ibm-eimDomainName= or ibm-eimdomainname=.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY0047 URL does not have a host.

Symbolic Identifier (value): EIMERR_URL_NOHOST

(47)

Explanation: The value specified for the ldapURL

parameter does not contain an LDAP host name.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY0048 URL has no port (required).

Symbolic Identifier (value): EIMERR_URL_NOPORT

(48)

Explanation: Not returned by EIM on z/OS

Programmer response: None.

System action: None.

ITY0049 URL does not begin with ldap:// or

ldaps://.

Symbolic Identifier (value):

 EIMERR_URL_NOTLDAP (49)

Explanation: The value specified for the ldapURL

parameter does not begin with ldap:// or ldaps://.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY0050 LDAP connection can only be made to

a replica LDAP server.

Symbolic Identifier (value):

 EIMERR_URL_READ_ONLY (50)

Explanation: The EIM API requires a connection to a

master or writable server.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

Chapter 8. Messages 91

ITY0051 Configuration URL is too large.

Symbolic Identifier (value): EIMERR_URL_SIZE (51)

Explanation: Not returned by EIM on z/OS

Programmer response: None.

System action: None.

ITY0052 The EimIdType value is not valid.

Symbolic Identifier (value):

 EIMERR_IDNAME_TYPE_INVAL (52)

Explanation: The value specified for the type of

identifier is not one of the allowed values.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY0053 Length of EimAttribute is not valid.

Symbolic Identifier (value): EIMERR_ATTRIB_SIZE

(53)

Explanation: The length of the value for the handle

attribute is fewer than 8 bytes.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY0054 Connection type is not valid.

Symbolic Identifier (value): EIMERR_CONN_INVAL

(54)

Explanation: The value specified for the connection

type is either not a correct connection time or not

supported on this platform.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY0055 Registry name must be NULL when

access type is not

EIM_ACCESS_REGISTRY.

Symbolic Identifier (value):

 EIMERR_REG_MUST_BE_NULL (55)

Explanation: The value specified for the access type

requires the registry name parameter to be NULL.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY0056 Unexpected object violation.

Symbolic Identifier (value):

 EIMERR_UNEXP_OBJ_VIOLATION (56)

Explanation: The EIM API attempted to retrieve the

entry UUID attribute for an LDAP entry and it was not

returned.

Programmer response: Contact your LDAP

administrator or system programmer. Provide this

person with the name of the EIM API and the error

number (errno) and error string.

System action: The called function fails.

ITY0057 Reserved field is not valid.

Symbolic Identifier (value):

 EIMERR_RESERVE_INVAL (57)

Explanation: Not returned by EIM on z/OS

Programmer response: None.

System action: None.

ITY0058 Credentials must be NULL for the

specified connection type.

Symbolic Identifier (value):

 EIMERR_CREDS_MUST_BE_NULL (58)

Explanation: The connection info parameter of the

EIM API does not have a NULL value for the creds field

in the connection info structure.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY0059 Error occurred after the domain object

was created.

Symbolic Identifier (value):

 EIMERR_DOMAIN_UNUSABLE (59)

Explanation: The EIM API was unable to create the

groups, identifier, source mappings, or registries

containers in the EIM domain. The domain is in an

unusable state. The return code is the value returned

from an ldap_add_s service.

Programmer response: Contact your LDAP

administrator or your systems programmer. Provide this

person with the name of the EIM API, the return code,

and the error string. The LDAP administrator will need

to delete the domain.

System action: The called function fails.

92 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

ITY0060 Policy filter type is not valid.

Symbolic Identifier (value):

 EIMERR_POLICY_FILTER_TYPE_INVAL (60)

Explanation: The value specified for the policy filter

type parameter is not a valid policy filter type.

Programmer response: Refer to the API

documentation for valid policy filter types, correct the

error and try the service again.

System action: The called function fails.

ITY0061 Policy filter value not found for the

specified registry.

Symbolic Identifier (value):

 EIMERR_NOPOLICYFILTER (61)

Explanation: The filter value is not defined for the

source registry.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY0062 Registry type is not valid.

Symbolic Identifier (value):

 EIMERR_REGTYPE_INVAL(62)

Explanation: The value specified for the registry type

is not one of the supported values.

Programmer response: Refer to the API

documentation for valid registry types, correct the error,

and try the service again.

System action: The called function fails.

ITY0063 User identity type is not valid.

Symbolic Identifier (value):

 EIMERR_USER_IDENTITY_TYPE_INVAL (63)

Explanation: The value specified for the user identity

type parameter is not a valid type.

Programmer response: Refer to the API

documentation for valid user identity types, correct the

error, and try the service again.

System action: The called function fails.

ITY0064 Length of EimUserIdentity is not valid.

Symbolic Identifier (value):

 EIMERR_USER_IDENTITY_SIZE (64)

Explanation: The value specified for the length of the

user identity information structure parameter is not

sufficient. The minimum storage required for the user

identity information structure is 16 bytes.

Programmer response: Obtain a larger block of

storage for the user identity information structure and

update the length value with the new size. Then try the

eimFormatUserIdentity service again.

System action: The called function fails.

ITY0065 User identity format type is not valid.

Symbolic Identifier (value):

 EIMERR_USER_IDENTITY_FORMAT_TYPE_INVAL

(65)

Explanation: The value specified for the format type

parameter is not a valid type.

Programmer response: Change the user identity

format type parameter to a supported value, and try the

service again.

System action: The called function fails.

ITY0066 Distinguished Name (DN) is not valid.

Symbolic Identifier (value): EIMERR_INVALID_DN

(66)

Explanation: An error occurred while attempting to

parse a distinguished name. The DN may have been

specified as a parameter or extracted from a certificate

parameter.

Programmer response: Correct the parameter in

error and try the service again.

System action: The called function fails.

ITY0067 Certificate data is not valid.

Symbolic Identifier (value):

 EIMERR_CERTIFICATE_INVAL(67)

Explanation: An error occurred while decoding or

parsing the certificate parameter.

Programmer response: Programmer Response:

Ensure the certificate parameter is a valid base64 or

DER encoded X.509 certificate.

System action: The called function fails.

ITY0068 Configuration format is not valid.

Symbolic Identifier (value):

 EIMERR_CONFIG_FORMAT_INVAL (68)

Explanation: The value specified in the configuration

info parameter for the configuration format is not a valid

type.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

Chapter 8. Messages 93

ITY0069 The specified type is not valid.

Symbolic Identifier (value): EIMERR_TYPE_INVAL

(69)

Explanation: The value specified for the type

parameter is not a valid.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY0070 The specified function is not supported

by the EIM version.

Symbolic Identifier (value):

 EIMERR_FUNCTION_NOT_SUPPORTED (70)

Explanation: The application called a functioin that

requires that the EIM domain controller (the LDAP

Server) have new schema elements that were not found

on the connected domain controller.

Programmer response: Use an EIM domain controller

that has the requisite support, or upgrade the existing

EIM domain controller to the minimum requisite level.

System action: The called function fails.

ITY0071 Unable to find LDAP schema.

Symbolic Identifier (value):

 EIMERR_LDAP_SCHEMA_NOT_FOUND (71)

Explanation: An attempt to obtain the

subschemasubentry suffix failed for the specified,

configured, or connected EIM domain controller.

Programmer response: Specify, configure, or connect

to an EIM domain controller that is supported by EIM.

System action: The called function fails.

ITY3300E Authentication Context exception.

Length not correct for ″{0}″. Length

found: {1}. Available length: {2}.

Explanation: A length inconsistency was detected in

an internal identity context data structure.

User response: Ensure the specified identity context

is valid. If the problem recurs, contact the IBM support

center.

System action: Processing stops.

ITY3301E Authentication Context exception. The

specified array is not large enough to

contain identity context headers.

Explanation: An error was detected while parsing an

identity context. The length of the specified array is not

large enough to hold a valid identity context.

User response: Ensure the specified identity context

is valid. If the problem recurs, contact the IBM support

center.

System action: Processing stops.

ITY3302E Authentication Context exception. The

value of the ″length″ field {0} does not

match the length of the array {1}.

Explanation: A length inconsistency was detected in

an internal identity context data structure.

User response: Ensure the specified identity context

is valid. If the problem recurs, contact the IBM support

center.

System action: Processing stops.

ITY3303E Authentication Context exception. OID

not correct for Type 1 authentication

context.

Explanation: The OID from the specified identity

context does not match the Type 1 authentication

context OID. The method called can only process

identity contexts which are Type 1 authentication

contexts.

User response: Ensure identity context is a Type 1

authentication context and retry the method.

System action: Processing stops.

ITY3304E Authentication Context exception. OID

in authentication context does not

match Type 1 OID.

Explanation: The internal OID from the specified

identity context does not match the Type 1

authentication context OID. The method called can only

process identity contexts which are Type 1

authentication contexts.

User response: Ensure identity context is a Type 1

authentication context and retry the API.

System action: Processing stops.

ITY3350E Identity Context exception. Identity

Context not found.

Explanation: An identity context could not be retrieved

for the specified context credentials. The context

credentials may not have been valid or may have timed

out.

User response: Ensure the context credentials are

valid and are used before they time out.

System action: Processing stops.

94 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

ITY3351E Identity Context exception. Identity

Context damaged.

Explanation: Not returned on z/OS.

User response: None.

System action: None.

ITY3352E Identity Context exception. Error in

API: {0}. Exception from EIM. EIM

Exception: {1}.

Explanation: Not returned on z/OS.

User response: None.

System action: None.

ITY3353E Missing required parameter. ″{0}″

Explanation: A required parameter was not supplied.

User response: Supply the required parameter and

retry the method.

System action: Processing stops.

ITY3354E Illegal argument for parameter: ″{0}″

Explanation: A parameter contains an illegal or

inappropriate argument.

User response: Consult the Javadoc for the correct

parameter syntax. Correct the illegal parameter value

and retry the method.

System action: Processing stops.

ITY3355E Input class not expected class type.

Expected class: ″{0}″

Explanation: A parameter is not of the expected class

type. The returned exception will include a substitution

for the expected class.

User response: Ensure all parameters match the

method signature. Use expected class to resolve the

problem and try the method again.

System action: Processing stops.

ITY4001 Error errno returned from attempt to

open message catalog file -- errnoText

Explanation: The utility failed to open the message

catalog named file. The open attempt sets the error

code Errno. errnoText is the associated explanation.

User response: Possible causes for this message

include an incomplete NLSPATH definition or insufficient

access to the file. Correct the problem and restart the

utility.

System action: The utility fails.

ITY4002 Error errno returned from attempt to

retrieve message from catalog file --

errnoText

Explanation: The utility failed to read a message from

the message catalog named file. The read attempt sets

the error code Errno. errnoText is the associated

explanation.

User response: Possible causes for this message

include a corrupt catalog file or a file having a different

service level than the utility. Correct the problem and

restart the utility.

System action: The utility fails.

ITY4010 No argument value specified for option

character.

Explanation: The option character specified requires

an argument value, but none was specified.

User response: Restart the utility specifying a value

for the indicated option, or omit the option altogether.

System action: The utility fails.

ITY4011 Option character not recognized.

Specify ’-?’ for utility syntax.

Explanation: The character specified is not a defined

option.

User response: You can review utility syntax by

specifying the -? option. Restart the utility specifying

correct option characters.

System action: The utility fails.

ITY4012 option not specified.

Explanation: The option names the entity that is

required for the function but was not specified through a

command line option or input data record.

User response: Restart the utility, making sure to

include a value for the requested option.

System action: The utility fails.

ITY4013 Specified type value not supported --

value

Explanation: Type describes the entity for which an

unsupported value was specified.

User response: Refer to the utility documentation for

allowable entity values. Restart the utility, specifying an

allowable value.

System action: The utility fails.

Chapter 8. Messages 95

ITY4014 Specified combination of action

’character’ and object type ’character’

not supported.

Explanation: The utility does not offer any function

corresponding to the specified action and object option

combination as indicated by character.

User response: Choose another option combination

and restart the utility.

System action: The utility fails.

ITY4015 Please enter LDAP bind password for

bindDN:

Explanation: The utility prompts for an LDAP bind

password if not specified as a command line option.

The password should be the one associated with the

LDAP bindDN specified.

User response: Enter the password as requested.

The value will not be displayed.

System action: The utility allows the user one chance

to input a non-NULL password value. If one is not

specified, the utility fails.

ITY4016 Please enter key file password for

fileName:

Explanation: The utility prompts for an SSL key

database file password if the specified file exists but its

password was not specified as a command line option.

The password should be the one associated with the

fileName specified. Alternatively, you can specify an

SSL password stash file by prefixing the stash file name

with ″file://″.

User response: Enter the password as requested.

The value will not be displayed.

System action: The utility allows the user one chance

to input a non-NULL password value. If one is not

specified, the utility fails.

ITY4017 Domain DN must be a distinguished

name beginning with

’ibm-eimDomainName=’.

Explanation: The value specified is incorrect or

incomplete.

User response: Restart the utility, making sure the

domain value is a distinguished name beginning with

’ibm-eimDomainName=’.

System action: The utility fails.

ITY4020 eimadmin (version) started time with

options commandLine

Explanation: The utility issues this informational

message when beginning its processing of input

records. Version indicates the program level. Time

indicates the date and time that processing began.

CommandLine is an approximation of the string issued

to start the utility.

User response: User Response:

 None.

System action: Processing continues.

ITY4021 Processing ended normally.

Explanation: The utility processed all records from the

input file; however, errors might have occurred along the

way.

User response: Check the preceeding ITY4022

message to learn if any errors occurred. If so, correct

them and, if appropriate, restart the utility against a file

of the previously-failing records.

System action: The utility stops.

ITY4022 Count records processed --

successCount successful; failCount

failed.

Explanation: When processing an input file, the utility

issues this message as a progress indicator one time

every 50 records and as a completion summary

statement. Count is the number of data lines processed

from the input file. SuccessCount is the number

processed without error, while failCount indicates the

number of records for which errors occurred. The count

value at the end of processing should equal the number

of data lines in the input file if message ITY4021 is

issued.

User response: If failCount is greater than zero,

errors occurred. Review preceding error messages to

determine where and why errors occurred. Correct the

errors and, if appropriate, restart the utility against a file

of the previously-failing records.

System action: The utility continues if there are

remaining unprocessed input records unless a severe

error has occurred.

ITY4023 Processing stopped due to error.

Explanation: The utility stopped processing before

reaching the end of data records in the input file

because it encountered a severe error.

User response: The last data record error message

should identify the problem, but less severe errors might

have occurred as well. Review the error messages to

determine where and why errors occurred. Correct the

96 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

errors and, if appropriate, restart the utility against a file

of the previously-failing records.

System action: The utility stops

ITY4024 Label definition line not found in input

file.

Explanation: The utility reached the end of the input

file without identifying the label definition line.

User response: Verify the input file specified is the

one intended and that it has a label line that is not

prefixed with a comment character. Restart the utility,

specifying an input file with proper syntax.

System action: The utility stops.

ITY4025 Unrecognized label found starting at

column position on input line number.

Explanation: The utility detected characters in the first

non-blank, non-comment line that do not constitute a

supported label. Position is the character offset from the

beginning of the line, identified by number.

User response: Verify the input file specified is the

one intended and that the label line contains only

supported labels. Restart the utility, specifying an input

file with proper syntax.

System action: The utility stops.

ITY4026 Missing final label delimiter ’character’

on input line number.

Explanation: The utility did not find the required field

delimeter, character, at the end of the label line, which

is line number of the input file.

User response: Insert the missing delimiter and

restart the utility.

System action: The utility stops.

ITY4027 Length of input line number exceeds

limit characters.

Explanation: The length of input file line number is

greater than the allowed limit.

User response: Shorten the data lines that exceed

the limit, and restart the utility.

System action: The utility stops.

ITY4028 Error occurred while processing input

line number.

Explanation: The utility encountered an error while

processing line number from the input file. The next line

of error ouput echoes the data line from the input file.

User response: Refer to the error message

immediately preceding this message to discover the

cause of the error. Correct the error, and restart the

utility.

System action: The utility stops if a severe error

occurred; otherwise it continues processing data

records.

ITY4030 Service name returned error code -- text

Explanation: The utility called a service, identified by

name, that returned an error. Code is the error number,

and text is the associated error message.

User response: The error text should indicate the

cause of the problem. If not, refer to error

documentation for the service. Correct the error, and

restart the utility.

System action: The utility stops if a severe error

occurred; otherwise it continues processing data

records.

ITY4031 Service name returned error code --

reason.

Explanation: The utility called a service, identified by

name, that returned an error. Code is the error number,

and reason is the corresponding reason number. This

message is issued in place of ITY4030 when the text for

the reason could not be found. This can happen for an

EIM service error if eimErr2String() encounters an error

reading its message catalog.

User response: The error codes should indicate the

cause of the problem. Correct the error and restart the

utility. Investigate the problem with the EIM message

catalog.

System action: The utility stops if a severe error

occurred, otherwise it continues processing data

records.

ITY4040 Internal error occurred -- text

Explanation: An unexpected internal error occurred as

described by text.

User response: If the problem re-occurs and cannot

be solved, contact service.

System action: The utility stops if a severe error

occurred, otherwise it continues processing data

records.

ITY4041 Program exception occurred.

Explanation: An unexpected program exception

stopped utility processing.

User response: Review the generated CEEDUMP for

diagnostic information that can help you resolve the

problem. It is unlikely that the requested function

completed successfully. List the entity specified for the

function to determine its status and retry the function if

Chapter 8. Messages 97

necessary. If the exception occurrred while the utility

was processing records from an input file, message

ITY4028 indicates the input line number and message

ITY4022 indicates the number of records successfully

processed.

System action: Processing stops. The recovery

routine generates a symptom record.

ITY4042 Specified combination of option

option1 and option2 is not supported.

Explanation: The utility failed during validation of the

specified options. The options option1 and option2 may

not be specified in conjunction with each other.

Programmer response: Correct the problem by

removing one of the options and try the command

again.

System action: The utility stops if a severe error

occurred; otherwise it continues processing data

records.

ITY4043 Could not find the certificate file --

service -- error text

Explanation: The utility performed validation of the

certificate file specified which failed. The indicated

service did not succeed and the problem encountered is

described in the included error text. The specified

certificate file may not exist, may be a zero length file,

or may not be a regular file or symbolic link to a regular

file.

Programmer response: The error text in the message

should indicate the problem. If not, refer to error

documentation for the service. Correct the error and

restart the utility.

System action: The utility stops if a severe error

occurred; otherwise it continues processing data

records.

ITY4044 Could not open the certificate file

Explanation: The certificate file specified could not be

opened because file may not be a regular file or fopen()

failed.

Programmer response: Correct the error and run the

utility command again.

System action: The utility fails.

ITY4045 Could not read the certificate file --

service -- error text

Explanation: The utility could not read the certificate

file specified. The indicated service did not succeed and

the problem encountered is described in the included

error text.

Programmer response: The error text in the message

should indicate the problem. If not, refer to error

documentation for the service. Correct the error and

restart the utility.

System action: The utility stops if a severe error

occurred; otherwise it continues processing data

records.

ITY4046 Expected string ″-----END

CERTIFICATE-----″ not found

Explanation: The certificate file name passed to the

utility encountered a base64 decoding problem. The

″-----BEGIN CERTIFICATE-----″ text string was found

but the corresponding ″-----END CERTIFICATE-----″ text

string was not found in the certificate file.

Programmer response: Specify a valid certificate file

and run the utility command again.

System action: The utility stops if a severe error

occurred; otherwise it continues processing data

records.

ITY6002 RACROUTE REQUEST=EXTRACT error

retrieving EIM configuration

information from the callers’s USER

profile. %1$s

Symbolic Identifier (value):

 EIMERR_ZOS_USER_XTR (6002)

Explanation: The EIM API failed while retrieving EIM

information from RACF. A RACROUTE

REQUEST=EXTRACT error occurred while retrieving

the EIM segment from the caller’s USER profile. Failing

user ID and return codes appear in the EimRC

substitution text. The substition text is:

USER(user id) SAF RC(xxxxxxxx) RACF RC(xxxxxxxx)

RACF RSN(xxxxxxxx)

The return and reason codes are in hex. The

RACROUTE return codes are documented in z/OS

Security Server RACROUTE Macro Reference.

Programmer response: Use the return codes to

resolve the problem in the user EIM segment and try

the service again.

System action: The called function fails.

ITY6003 RACROUTE REQUEST=EXTRACT error

retrieving EIM information from a

RACF profile. %1$s

Symbolic Identifier (value): EIMERR_ZOS_XTR_EIM

(6003)

Explanation: The EIM API failed while retrieving EIM

information from RACF. A RACROUTE

REQUEST=EXTRACT error occurred while retrieving

the EIM segment from a RACF profile. Failing user ID,

class, profile name and return codes appear in the

EimRC substitution text. The substitution text is:

98 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

USER(user ID) CLASS(class) PROFILE(profile name)

SAF RC(xxxxxxxx) RACF RC(xxxxxxxx) RACF

RSN(xxxxxxxx)

The return and reason codes are in hex. The

RACROUTE return codes are documented in z/OS

Security Server RACROUTE Macro Reference.

Programmer response: Use the return codes to

resolve the problem in the profile and try the service

again.

System action: The called function fails.

ITY6004 EIM domain distinguished name is

missing. %1$s

Symbolic Identifier (value):

 EIMERR_ZOS_XTR_DOMAINDN (6004)

Explanation: The EIM API failed while retrieving EIM

information from RACF. The EIM segment DOMAINDN

field has a length of zero. Failing user ID, class and

profile name appear in the EimRC substitution text. The

substitution text is:

USER(user id) CLASS(class) PROFILE(profile name)

Programmer response: Ensure the EIM segment

DOMAINDN field is defined properly and try the service

again.

System action: The called function fails.

ITY6005 RACROUTE REQUEST=EXTRACT error

retrieving PROXY information from a

RACF profile. %1$s

Symbolic Identifier (value):

 EIMERR_ZOS_XTR_PROXY (6005)

Explanation: The EIM API failed while retrieving

PROXY information from RACF. A RACROUTE

REQUEST=EXTRACT error occurred while retrieving

the PROXY segment from a RACF profile. Failing user

ID, class, profile name and return codes will appear in

the EimRC substitution text. The substitution text is:

USER(user id) CLASS(class) PROFILE(profile name)

SAF RC(xxxxxxxx) RACF RC(xxxxxxxx) RACF

RSN(xxxxxxxx)

The return and reason codes are in hex. The

RACROUTE return codes are documented in z/OS

Security Server RACROUTE Macro Reference.

Programmer response: Use the return codes to

resolve the problem in the profile and try the service

again.

System action: The called function fails.

ITY6006 PROXY LDAP host is missing. %1$s

Symbolic Identifier (value):

 EIMERR_ZOS_XTR_LDAPHOST (6006)

Explanation: The EIM API failed while retrieving

PROXY information from RACF. The PROXY segment

LDAPHOST field has a length of zero. Failing user ID,

class and profile name appear in the EimRC substitution

text. The substitution text is:

USER(user id) CLASS(class) PROFILE(profile name)

Programmer response: Ensure the PROXY segment

LDAPHOST field is defined properly and try the service

again.

System action: The called function fails.

ITY6007 PROXY bind distinguished name is

missing. %1$s

Symbolic Identifier (value):

 EIMERR_ZOS_XTR_BINDDN (6007)

Explanation: The EIM API failed while retrieving

PROXY information from RACF. The PROXY segment

BINDDN field has a length of zero. Failing user ID,

class and profile name appear in the EimRC substitution

text. The substitution text is:

USER(user id) CLASS(class) PROFILE(profile name)

Programmer response: Ensure the PROXY segment

BINDDN field is defined properly and try the service

again.

System action: The called function fails.

ITY6008 R_DCEKEY callable service failed.

%1$s

Symbolic Identifier (value):

 EIMERR_ZOS_R_DCEKEY (6008)

Explanation: The EIM API failed while retrieving

PROXY information from RACF. An error occurred

during R_DCEKEY callable service processing. Failing

user ID, class, profile name and return codes appear in

the EimRC substitution text. The substitution text is:

USER(user id) CLASS(class) PROFILE(profile name)

SAF RC(xxxxxxxx) RACF RC(xxxxxxxx) RACF

RSN(xxxxxxxx)

The return and reason codes are in hex. The

R_DCEKEY return codes are documented in z/OS

Security Server RACF Callable Services.

Programmer response: Use the return codes to

resolve the R_DCEKEY problem and try the service

again.

System action: The called function fails.

Chapter 8. Messages 99

ITY6009 R_DCEKEY callable service failed. Bind

password is missing. %1$s

Symbolic Identifier (value):

 EIMERR_ZOS_R_DCEKEY_BINDPW (6009)

Explanation: The EIM API failed while retrieving

PROXY information from RACF. An error occurred

during R_DCEKEY callable service processing. The

PROXY segment BINDPW field has a length of zero.

Failing user ID, class, profile name and return codes

appear in the EimRC substitution text. The substitution

text is:

USER(user id) CLASS(class) PROFILE(profile name)

SAF RC(xxxxxxxx) RACF RC(xxxxxxxx) RACF

RSN(xxxxxxxx)

The return and reason codes are in hex. The

R_DCEKEY return codes are documented in z/OS

Security Server RACF Callable Services.

Programmer response: Ensure the PROXY segment

BINDPW field is defined properly and try the service

again.

System action: The called function fails.

ITY6010 No task or address space ACEE was

found.

Symbolic Identifier (value):

 EIMERR_ZOS_NO_ACEE (6010)

Explanation: The EIM API service failed because a

task or address space ACEE could not be found.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY6011 Error occurred when converting data

between code pages. %1$s

Symbolic Identifier (value):

 EIMERR_ZOS_DATA_CONVERSION (6011)

Explanation: An error occurred when converting data

between code pages. Check the EimRC substitution text

for more specific code page errors. The EIM API is

unable to determine the current code page or cannot

translate between the code pages specified in the

substitution text. The substition text is:

Failed converting to UTF-8 from <current locale

codeset>

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY6012 The EIM API is not supported.

Symbolic Identifier (value): EIMERR_API_NOTSUPP

(6012)

Explanation: The called function is not available to

z/OS programs.

Programmer response: Check the documentation for

the EIM API for alternative methods of providing the

function. Correct the program and try the service again.

System action: The called function fails.

ITY6013 Password protection value not

supported.

Symbolic Identifier (value):

 EIMERR_PROTECT_NOTSUPP (6013)

Explanation: The value specified for password

protection is either incorrect or not supported on this

platform.

Programmer response: Check the documentation for

the EIM API and verify the value is supported. If the

value is not supported or an incorrect value was

specified for the attribute, correct the program and try

the service again.

System action: The called function fails.

ITY6014 The specified value for the function

parameter is not valid.

Symbolic Identifier (value):

 EIMERR_ZOS_FUNCTION_INVAL (6014)

Explanation: The EIM API failed verification of the

function parameter. The specified value for the function

parameter is not one of the supported values.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY6015 The EIM API failed verification of the

user identity parameter. The user

identity value must be NULL.

Symbolic Identifier (value):

 EIMERR_USERID_MUST_BE_NULL(6015)

Explanation: The user identity parameter must be

NULL when specified with IRR.EIM.DEFAULTS or

IRR.PROXY.DEFAULTS profiles names.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

100 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

ITY6016 The length of the specified profile

name is not valid.

Symbolic Identifier (value): EIMERR_PROFILE_SIZE

(6016)

Explanation: The EIM API failed verification of the

value specified for the profile name. The profile name

passed exceeded the maximum length for a profile

which is 246 characters.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY6017 The length of the specified user

identity is not valid.

Symbolic Identifier (value): EIMERR_USERID_SIZE

(6017)

Explanation: The EIM API failed verification of the

value specified for the user identity. The value passed

for the user identity exceeded the maximum length

which is 8 characters.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY6018 The bind password is missing in the

specified profile. %1$s

Symbolic Identifier (value):

 EIMERR_ZOS_XTR_BINDPW (6018)

Explanation: The EIM API failed while retrieving the

BINDPW field of the PROXY segment from the

specified profile. The PROXY segment BINDPW field

has a length of zero. Failing user ID, class and profile

name appear in the EimRC substitution text. The

substitution text is:

 USER(user id) CLASS(class) PROFILE(profile name)

Programmer response: Ensure the PROXY segment

BINDDN field is defined properly and try the service

again.

System action: The called function fails.

ITY6019 The length of the specified bind

password is not valid.

Symbolic Identifier (value):

 EIMERR_ZOS_BINDPW_SIZE (6019)

Explanation: The EIM API failed verification of the

value specified for the bind password. The value passed

exceeds the maximum length allowed which is 128

characters.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY6020 The length of the specified bind

distinguished name is not valid.

Symbolic Identifier (value):

 EIMERR_ZOS_BINDDN_SIZE (6020)

Explanation: The EIM API failed verification of the

value specified for the bind distinguished name(DN).

The value passed exceeds the maximum length allowed

which is 1023 characters.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY6021 The RACF command invoked by the

R_admin callable service failed - %1$s

Symbolic Identifier (value):

 EIMERR_ZOS_RADMIN_CMD_ERROR (6021)

Explanation: The EIM API failed while attempting to

create, update, or delete a security product profile with

the R_admin callable service. If the calling program

passed an EimRC structure pointer to the API, the

substitution text will contain the return and reason codes

returned from R_admin, the failing command string

passed to R_admin, and any error messages returned

from the R_admin callable service. The substitution text

is:

 R_admin command(command string)

SAF RC(return code) RACF RC(return code)

RACF RSN(reason code)

Command error message 1

Command error message 2

...

The return and reason codes are in decimal. The

R_admin callable service return and reason codes are

documented in z/OS Security Server RACF Callable

Services.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY6022 The invocation of the R_admin callable

service failed - %1$s

Symbolic Identifier (value):

 EIMERR_ZOS_RADMIN_ERROR (6022)

Explanation: The EIM API failed while attempting to a

call to the R_admin callable service. If the calling

program passed an EimRC structure pointer to the API,

the substitution text will contain the return and reason

codes returned from R_admin, the command string

passed to R_admin, and any error messages returned

from the R_admin callable service. The substitution text

is:

Chapter 8. Messages 101

R_admin command(command string)

SAF RC(return code) RACF RC(return code)

RACF RSN(reason code)

Command error message 1

Command error message 2

...

The return and reason codes are in decimal. The

R_admin callable service return and reason codes are

documented in z/OS Security Server RACF Callable

Services.

Programmer response: Correct the error and try the

service again.

System action: The called function fails.

ITY6023 The R_GetInfo callable service failed.

Not authorized to use this service.

%1$s

Symbolic Identifier (value):

 EIMERR_ZOS_RGETINFO_AUTH (6023)

Explanation: The EIM API failed while retrieving EIM

information from RACF. The R_GetInfo callable service

returned an authorization failure. Failing user ID, class,

profile name and return codes appear in the EimRC

substitution text. The substitution text is:

USER(user ID) CLASS(class) PROFILE(profile name)

SAF RC(xxxxxxxx) RACF RC(xxxxxxxx) RACF

RSN(xxxxxxxx)

The EimRC substitution text can contain null values,

such as USER(), for parameters which are not

applicable to the failing request. The return and reason

codes are in hex. The R_GetInfo return codes are

documented in z/OS Security Server RACF Callable

Services.

Programmer response: Use the return codes to

resolve the R_GetInfo problem and try the service

again.

System action: The called function fails.

ITY6024 The R_GetInfo callable service failed.

Field-level access checking failed.

%1$s

Symbolic Identifier (value):

 EIMERR_ZOS_RGETINFO_FLAC (6024)

Explanation: The EIM API failed while retrieving EIM

information from RACF. The R_GetInfo callable service

returned a field-level access check failure. Failing user

ID, class, profile name and return codes 365 appear in

the EimRC substitution text. The substitution text is:

USER(user ID) CLASS(class) PROFILE(profile name)

SAF RC(xxxxxxxx) RACF RC(xxxxxxxx) RACF

RSN(xxxxxxxx)

The EimRC substitution text can contain null values,

such as USER(), for parameters not applicable to the

failing request. The return and reason codes are in hex.

The R_GetInfo return codes are documented in z/OS

Security Server RACF Callable Services.

Programmer response: Use the return codes to

resolve the R_GetInfo problem and try the service

again.

System action: The called function fails.

ITY6025 The R_GetInfo callable service failed.

Extract failed. %1$s

Symbolic Identifier (value):

 EIMERR_ZOS_RGETINFO_XTR (6025)

Explanation: The EIM API failed while retrieving EIM

information from RACF. The R_GetInfo callable service

encountered an unexpected error while attempting to

extract EIM information. Failing user ID, class, profile

name and return codes appear in the EimRC

substitution text. The substitution text is:

USER(user ID) CLASS(class) PROFILE(profile name)

SAF RC(xxxxxxxx) RACF RC(xxxxxxxx) RACF

RSN(xxxxxxxx)

The EimRC substitution text can contain null values,

such as USER(), for parameters not applicable to the

failing request. The return and reason codes are in hex.

The R_GetInfo return codes are documented in z/OS

Security Server RACF Callable Services.

Programmer response: Look for related RACF

messages, ensure that the EIM information being

retrieved was defined properly, and try the service

again.

System action: The called function fails.

ITY6026 The R_GetInfo callable service failed.

%1$s

Symbolic Identifier (value):

 EIMERR_ZOS_RGETINFO_ERROR (6026)

Explanation: The EIM API failed while retrieving EIM

information from RACF. The R_GetInfo callable service

returned a processing failure. Failing user ID, class,

profile name and return codes appear in the EimRC

substitution text. The substitution text is:

USER(user ID) CLASS(class) PROFILE(profile name)

SAF RC(xxxxxxxx) RACF RC(xxxxxxxx) RACF

RSN(xxxxxxxx)

The EimRC substitution text can contain null values,

such as USER(), for parameters not applicable to the

failing request. The return and reason codes are in hex.

The R_GetInfo return codes are documented in z/OS

Security Server RACF Callable Services.

Programmer response: Use the return codes to

resolve the R_GetInfo problem and try the service

again.

102 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

System action: The called function fails.

ITY6027 Error retrieving EIM configuration

information from the caller’s USER

profile. %1$s

Symbolic Identifier (value):

 EIMERR_ZOS_USER_XTR (6027)

Explanation: The EIM API failed while retrieving EIM

information from RACF. An R_GetInfo callable service

error occurred while retrieving the EIM segment from

the caller’s USER profile. Failing user ID and return

codes appear in the EimRC substitution text. The

substitution text is:

USER(user ID) SAF RC(xxxxxxxx) RACF RC(xxxxxxxx)

RACF RSN(xxxxxxxx)

The return and reason codes are in hex. The R_GetInfo

return codes are documented in z/OS Security Server

RACF Callable Services.

Programmer response: Use the return codes to

resolve the problem in the user EIM segment and try

the service again. If the substitution text does not

contain values for SAF RC, RACF RC, and RACF RSN,

the required profile or segment was not found.

System action: The called function fails.

ITY6028 Error retrieving EIM information from a

RACF profile. %1$s

Symbolic Identifier (value): EIMERR_ZOS_XTR_EIM

(6028)

Explanation: The EIM API failed while retrieving EIM

information from RACF. An R_GetInfo callable service

error occurred while retrieving the EIM segment from a

RACF profile. Failing user ID, class, profile name and

return codes appear in the EimRC substitution text. The

substitution text is:

USER(user ID) CLASS(class) PROFILE(profile name)

SAF RC(xxxxxxxx) RACF RC(xxxxxxxx) RACF

RSN(xxxxxxxx)

The return and reason codes are in hex. The R_GetInfo

return codes are documented in z/OS Security Server

RACF Callable Services.

Programmer response: Use the return codes to

resolve the problem in the profile and try the service

again. If the substitution text does not contain values for

SAF RC, RACF RC, and RACF RSN, the required

profile or segment was not found.

System action: The called function fails.

ITY6029 Error retrieving PROXY information

from a RACF profile. %1$s

Symbolic Identifier (value):

 EIMERR_ZOS_XTR_PROXY (6029)

Explanation: The EIM API failed while retrieving

PROXY information from RACF. An R_GetInfo callable

service error occurred while retrieving the PROXY

segment from a RACF profile. Failing user ID, class,

profile name and return codes appear in the EimRC

substitution text. The substitution text is:

USER(user ID) CLASS(class) PROFILE(profile name)

SAF RC(xxxxxxxx) RACF RC(xxxxxxxx) RACF

RSN(xxxxxxxx)

The return and reason codes are in hex. The R_GetInfo

return codes are documented in z/OS Security Server

RACF Callable Services.

Programmer response: Use the return codes to

resolve the problem in the profile and try the service

again. If the substitution text does not contain values for

SAF RC, RACF RC, and RACF RSN, the required

profile or segment was not found.

System action: The called function fails.

ITY6500E com.ibm.ictx.identitycontext.zOS

StorageMechanism is only valid on

z/OS release 1.8 or later systems.

Explanation: The zOSStorageMechanism was

instantiated on an unsupported system.

User response: Utilize the StorageMechanismFactory

and the LdapStorageMechanism for remote access to

the identity cache.

System action: Processing stops.

ITY6501E Length of ″{0}″ is not valid. Length

found: {1}. Length must be exactly: {2}.

Explanation: A specified parameter has an invalid

length.

User response: Correct the invalid length and retry

the method.

System action: Processing stops.

ITY6502E The R_cacheserv callable service

failed. {0}

Explanation: The method failed while attempting to

call the R_cacheserv callable service. The returned

exception text will contain the return and reason codes

from R_cacheserv. The substitution text is:

SAF RC(return code) RACF RC(return code)

RACF RSN(reason code)

User response: Use the return and reason codes to

Chapter 8. Messages 103

resolve the R_cacheserv problem and try the method

again.

System action: Processing stops.

ITY6503E The R_cacheserv callable service

failed. Not authorized to use this

service. {0}

Explanation: The method failed while attempting to

call the R_cacheserv callable service. R_cacheserv

return and reason codes indicate an authorization

failure. The returned exception text will contain the

return and reason codes from R_cacheserv. The

substitution text is:

SAF RC(return code) RACF RC(return code)

RACF RSN(reason code)

User response: Use the return and reason codes to

resolve the R_cacheserv problem and try the method

again.

System action: Processing stops.

ITY6504E The R_cacheserv callable service

failed. The length of the identity

context record is not valid. {0}

Explanation: The method failed while attempting to

call the R_cacheserv callable service. R_cacheserv

return and reason codes indicate that the identity

context is too large to store successfully. The returned

exception text will contain the return and reason codes

from R_cacheserv. The substitution text is:

SAF RC(return code) RACF RC(return code)

RACF RSN(reason code)

User response: Use the return and reason codes to

resolve the R_cacheserv problem and try the method

again.

System action: Processing stops.

ITY6505E Error calling EIM API: ″{0}″. EIM error

message: ″{1}″

Explanation: The method failed while attempting to

call an EIM API. The returned exception will include

substitutions for the failing EIM API name and the EIM

error message.

User response: Use the EIM API name and error

message to resolve the EIM problem and try the

method again.

System action: Processing stops.

ITY6506E Error calling EIM API: ″{0}″. EIM Error

Message could not be accessed.

eimErr2String errno text: ″{1}″

Explanation: The method failed while attempting to

call an EIM API. Another error occurred while calling

eimErr2String to access the EIM message. The returned

exception will include substitutions for the failing EIM

API name and the eimErr2String errno text.

User response: Use the EIM API name and

eimErr2String errno text to resolve the EIM problem and

try the method again.

System action: Processing stops.

ITY6507E Configuration prevents store requests:

USEMAP(NO) DOMAP(NO)

MAPREQUIRED(YES).

Explanation: The current ICTX configuration does not

allow store requests. MAPREQUIRED(YES) requires a

local mapping, but both USEMAP and DOMAP are

disabled.

User response: If a local mapping is desired, enable

USEMAP and/or DOMAP. If a local mapping is not

desired, disable MAPREQUIRED.

System action: Processing stops.

ITY6508E Configuration allows only Type 1

authentication contexts be stored:

MAPREQUIRED(YES).

Explanation: The current ICTX configuration requires

a local mapping but the provided identity context was

not a Type 1 authentication context. In order to perform

a local mapping, information must be parsed from a

Type 1 authentication context.

User response: If a local mapping is desired, a Type

1 authentication context must be provided. If an

alternate identity context is to be stored,

MAPREQUIRED must be disabled.

System action: Processing stops.

ITY6509E Configuration prevents store requests:

Local registry must be configured with

MAPREQUIRED(YES).

Explanation: The current ICTX configuration indicates

local mapping is required but the local registry is not

configured. In order to perform a local mapping with

USEMAP or DOMAP, the local registry must be

configured.

User response: If a local mapping is desired, use

RACF commands to configure the local registry. If a

local mapping is not desired, disable MAPREQUIRED.

System action: Processing stops.

ITY6510E Store request failed. Configuration

requires local mapping:

MAPREQUIRED(YES). {0} {1}

Explanation: The current ICTX configuration indicates

local mapping is required but both USEMAP and

DOMAP could not be successfully completed. The

104 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

substitution text indicates the reasons why USEMAP

and DOMAP could not be completed.

 USEMAP substitutions:

v Configuration does not allow premapped data:

USEMAP(NO).

v Premapped data was not provided.

v The registry from the premapped data did not match

the configured local registry.

v The user from the premapped data does did have a

valid length. Valid values are 1 to 8.

DOMAP substitutions:

v Configuration does not allow local mapping:

DOMAP(NO).

v Local mapping was not found.

v Multiple local mappings were found.

v Local mapping found, but length is not valid. Valid

values are 1 to 8.

v Could not perform local mapping. Source user was

not found.

v Could not perform local mapping. Source registry was

not found.

User response: If a local mapping is desired, use the

exception text to resolve the USEMAP and/or DOMAP

problem and try the method again. If a local mapping is

not desired, disable MAPREQUIRED.

System action: Processing stops.

ITY6511E Error processing returned identity

context. RecordName size is not valid.

Explanation: A length inconsistency was detected in

an internal identity context data structure.

User response: If the problem recurs, contact the IBM

support center.

System action: Processing stops.

ITY6512E Error processing returned identity

context. RecordName eyecatcher not

valid.

Explanation: A invalid data structure identifier

(eyecatcher) was detected in an internal identity context

data structure.

User response: If the problem recurs, contact the IBM

support center.

System action: Processing stops.

ITY6513E Error processing returned identity

context. RecordName version not valid.

Explanation: An invalid version was detected in an

internal identity context data structure.

User response: If the problem recurs, contact the IBM

support center.

System action: Processing stops.

ITY6514E Error processing returned identity

context. No Context or record name

returned.

Explanation: An error was detected while attempting

to retrieve an identity context.

User response: If the problem recurs, contact the IBM

support center.

System action: Processing stops.

ITY6515E Incompatible object class detected for

parameter: {0}

Explanation: A parameter is not of the expected class

type. The returned exception will include a substitution

for the incompatible parameter.

User response: Ensure all parameters match the

method signature. Use parameter name to resolve the

problem and try the method again.

System action: Processing stops.

ITY6516E An exception was caught while calling

an LdapContext method: {0}. Root

exception: {1}

Explanation: An exception was caught while calling

an LdapContext method. The returned exception will

include substitutions for the failing LdapContext method

name and the root exception text.

User response: Use the LdapContext method name

and root exception text to resolve the problem and try

the method again.

System action: Processing stops.

ITY6517E Error parsing data returned from the

ICTX LDAP server. ExopData size is

not valid.

Explanation: A length inconsistency was detected in

an internal identity context data structure.

User response: If the problem recurs, contact the IBM

support center.

System action: Processing stops.

ITY6518E Error parsing data returned from the

ICTX LDAP server. ExopData version

not valid. Version found: {0}

Explanation: An invalid version was detected in an

internal identity context data structure.

Chapter 8. Messages 105

User response: If the problem recurs, contact the IBM

support center.

System action: Processing stops.

ITY6519E Error parsing data returned from the

ICTX LDAP server. ExopData

eyecatcher not valid. Version found:

{0}

Explanation: An invalid data structure identifier

(eyecatcher) was detected in an internal identity context

data structure.

User response: If the problem recurs, contact the IBM

support center.

System action: Processing stops.

ITY6520E Error parsing returned data. IctxRc

version not valid. Version found: {0}

Explanation: An invalid version was detected in an

internal identity context data structure.

User response: If the problem recurs, contact the IBM

support center.

System action: Processing stops.

ITY6521E An exception was caught while

attempting codepage convert to

encoding: {0}. Root exception: {1}

Explanation: An exception was caught while

attempting a codepage conversion. The returned

exception will include substitutions for the encoding

name and root exception text.

User response: Use the encoding name and root

exception text to resolve the problem and try the

method again. Ensure the international version of the

JRE, which contains the Extended Encoding Set

(contained in lib/charsets.jar), has been installed.

System action: Processing stops.

ITY6522E Unable to load JNI library: {0}.

Explanation: An error was detected while attempting

to load a JNI library. The returned exception will include

a substitution for the JNI library name.

User response: JNI libraries are operating system

specific. Ensure that the caller is on a supported OS

and release. Ensure that the JNI library is in the caller’s

PATH and that the caller has at least read access. Retry

the method.

System action: Processing stops.

ITY6523E Error detected while retrieving

configuration information. RCVI pointer

is not valid.

Explanation: An error was detected while attempting

to load configuration information. An invalid pointer to

the RCVI configuration information was detected.

User response: Attempt to refresh the configuration

information by RACLIST REFRESHing the LDAPBIND

class and try the method again. If the problem recurs,

contact the IBM support center.

System action: Processing stops.

ITY6524E Error detected while retrieving

configuration information. Active table

pointer is not valid.

Explanation: An error was detected while attempting

to load configuration information. An invalid pointer in

the RCVI was detected.

User response: Attempt to refresh the configuration

information by RACLIST REFRESHing the LDAPBIND

class and try the method again. If the problem recurs,

contact the IBM support center.

System action: Processing stops.

ITY6525E Error detected while retrieving

configuration information. Version is

not valid.

Explanation: An error was detected while attempting

to load configuration information. An invalid version in

the RCVI was detected.

User response: Attempt to refresh the configuration

information by RACLIST REFRESHing the LDAPBIND

class and try the method again. If the problem recurs,

contact the IBM support center.

System action: Processing stops.

ITY6526E Error processing R_dcekey results.

BINDPW returned with zero length.

Explanation: The method failed while attempting to

parse BINDPW configuration information returned from

the R_ dcekey callable service.

User response: Ensure an appropriate ICTX profile is

defined and the LDAPBIND class is active and

RACLISTed. If the profile is updated, the LDAPBIND

class must be RACLIST REFRESHed for the changes

to become active.

System action: Processing stops.

106 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

ITY6527E The R_dcekey callable service failed.

{0}

Explanation: The method failed while attempting to

call the R_dcekey callable service. The returned

exception text will contain the return and reason codes

from R_dcekey. The substitution text is:

SAF RC(return code) RACF RC(return code)

RACF RSN(reason code)

User response: Use the return and reason codes to

resolve the R_dcekey problem and try the method

again.

System action: Processing stops.

ITY6528E The R_dcekey callable service failed.

Bind password is missing. {0}

Explanation: The method failed while attempting to

call the R_ dcekey callable service. R_ dcekey return

and reason codes indicate that the bind password is not

configured. The returned exception text will contain the

return and reason codes from R_ dcekey. The

substitution text is:

SAF RC(return code) RACF RC(return code)

RACF RSN(reason code)

User response: Use the return and reason codes to

resolve the R_ dcekey problem and try the method

again. Ensure an appropriate ICTX profile is defined

and the LDAPBIND class is active and RACLISTed.

System action: Processing stops.

ITY6529E Required LDAP bind information not

configured: {0}

Explanation: An error was detected while attempting

to load default bind credentials. A field required to bind

to LDAP was not configured. The returned exception

text will contain the name of the required field.

User response: Ensure an appropriate ICTX profile is

defined and the LDAPBIND class is active and

RACLISTed. If the profile is updated, the LDAPBIND

class must be RACLIST REFRESHed for the changes

to become active.

System action: Processing stops.

ITY6530E Error processing returned identity

context. OidContext name size is not

valid.

Explanation: A length inconsistency was detected in

an internal identity context data structure.

User response: If the problem recurs, contact the IBM

support center.

System action: Processing stops.

ITY6531E Error processing returned identity

context. OidContext eyecatcher not

valid.

Explanation: An invalid data structure identifier

(eyecatcher) was detected in an internal identity context

data structure.

User response: If the problem recurs, contact the IBM

support center.

System action: Processing stops.

ITY6532E Error processing returned identity

context. OidContext version not valid.

Explanation: An invalid version was detected in an

internal identity context data structure.

User response: If the problem recurs, contact the IBM

support center.

System action: Processing stops.

ITY6592A Suffix suffix_name already in use.

Remove duplicate suffix definition.

Explanation: The LDAP server reported that

suffix_name was already defined as a suffix for another

plugin or backend when ICTX plugin initialization

attempted to register that name. The ICTX plugin must

be defined with suffix “CN=ICTX”, which should not be

used by any other plugin or backend in the configuration

file. Neither should any subordinate suffix value in any

letter case such as “cn=abc, cn=ictx” be defined. Also

verify the ICTX configuration statement is not duplicated

accidentally.

User response: Correct the configuration file

statements and restart the LDAP server.

System action: ICTX plugin initialization fails. The

LDAP server stops.

ITY6593A Unexpected function error encountered

during ICTX initialization.

Explanation: The ICTX plugin initialization process

was terminated prematurely as a result of an

unforeseen error. Look for associated diagnostic

information in the system or job log. Consider restarting

the LDAP server with tracing enabled to obtain

additional error details.

User response: Correct cause of the error and restart

the LDAP server.

System action: ICTX plugin initialization fails. The

LDAP server stops.

Chapter 8. Messages 107

 | |
 |

 |
 |
 |
 |
 |
 |
 |
 |
 |
 |

 |
 |

 |
 |

 | |
 |

 |
 |
 |
 |
 |
 |

 |
 |

 |
 |

ITY6594A Incorrect plugin type configured for

ICTX. Specify type clientOperation

instead.

Explanation: The ICTX plugin was defined in the

configuration file with plugin type other than

clientOperation.

User response: Ensure clientOperation is specified

and restart the LDAP server.

System action: ICTX plugin initialization fails. The

LDAP server stops.

ITY6595E Failure encountered in the audit

logging facility. R_auditx returned

saf_return_code, racf_return_code,

racf_reason_code.

Explanation: ICTX extended operations encountered

a failure when invoking the audit logging facility. The

R_auditx callable service returned the values

saf_return_code, racf_return_code, and

racf_reason_code.

User response: If the remote auditing function is

needed, correct the problem indicated by the R_auditx

codes. R_auditx code set ″8, 8, 4″ indicates the user

associated with the LDAP server does not have at least

READ access to the FACILITY class profile

IRR.RAUDITX.

System action: Initialization continues, but the remote

auditing requests will fail until an administrator responds

to the problem.

ITY6596A Incorrect suffix configured for ICTX.

Specify suffix ″CN=ICTX″ instead.

Explanation: ICTX extended operations encountered

an error verifying configuration information. A suffix

other than ″CN=ICTX″ was specified

User response: Ensure only the one ″CN=ICTX″

suffix is specified and restart the IBM TDS server.

System action: ICTX extended operations initialization

fails. The IBM TDS server stops.

ITY6597A Too many suffixes configured for ICTX.

Specify only suffix ″CN=ICTX″.

Explanation: ICTX extended operations encountered

an error verifying configuration information. More than

one suffix was specified.

User response: Ensure only the one ″CN=ICTX″

suffix is specified and restart the IBM TDS server.

System action: ICTX extended operations initialization

fails. The IBM TDS server stops.

ITY6598A No suffix configured for ICTX. Specify

suffix ″CN=ICTX″.

Explanation: ICTX extended operations encountered

an error verifying configuration information. The required

suffix ″CN=ICTX″ was not specified.

User response: Specify suffix ″CN=ICTX″ and restart

the IBM TDS server.

System action: ICTX extended operations initialization

fails. The IBM TDS server stops.

ITY6598A ICTX suffix must be specified exactly

once.

Explanation: ICTX extended operations encountered

an error verifying configuration information. The required

suffix ″CN=ICTX″ was not specified, or additional

suffixes were specified.

User response: Correct the ICTX suffix specification

and restart the LDAP server.

System action: ICTX extended operations initialization

fails. The LDAP server stops.

ITY6599E Failure to update ICTX cache.

R_cacheserv returned saf_return_code,

racf_return_code, racf_reason_code.

Explanation: ICTX extended operations encountered

a failure when attempting to store an entry in the cache.

The R_cacheserv callable service returned the values

saf_return_code, racf_return_code, and

racf_reason_code.

User response: If ICTX cache functions are needed,

correct the problem indicated by the R_cacheserv

codes. R_cacheserv code set ″8, 8, 16″ indicates the

user associated with the LDAP server does not have

UPDATE access to the FACILITY class profile

IRR.RCACHESERV.ICTX.

System action: ICTX extended operations initialization

fails. The LDAP server stops.

108 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

||
|
|

|
|
|

|
|

|
|

Chapter 9. The eimadmin utility

The eimadmin utility is a z/OS UNIX System Services Shell tool. An administrator

can use it to define an EIM domain and prime the domain with registries, identifiers,

and associations between identifiers, registry users and policies. An administrator

can also use eimadmin to give users (and other administrators) access to an EIM

domain or list or remove the EIM entities.

An administrator can use the eimadmin command in two ways:

v By including information with command-line options on an eimadmin command

v By including information in an input file that an eimadmin command references

You can create the file manually or by exporting records from a data base. (See

“Using an input file” on page 128 for more information.) The administrator directs

utility processing by specifying a combination of command-line options. (See

“Purpose” on page 110 and “Parameters” on page 114 for more information.)

© Copyright IBM Corp. 2002, 2008 109

eimadmin

Purpose

Perform actions on the following objects:

v Domains

v Registries

v Identifiers

v Associations

v Access authorities

v Policies

The actions you can perform include the following:

v Add an object

v Purge an object

v List objects (for example, list directories, list registries, and so forth)

v Modify attributes associated with objects

v Erase attributes

Format

eimadmin -a | -p | -l | -m | -e

 -D | -R | -I | -A | -C | -Y

 [-b bindDN]

 [-B attribute]

 [-c accessType]

 [-d domainDN]

 [-E certificate]

 [-f accessUserType]

 [-F issuerFilter]

 [-g registryParent]

 [-G certificateFilterTemplate]

 [-h ldapHost]

 [-i identifier]

 [-j otherIdentifier]

 [-J subjectFilter]

 [-k URI]

 [-K keyFile [-P keyFilePassword] [-N certificateLabel]]

 [-n description]

 [-o information]

 [-q accessUser]

 [-r registryName]

 [-s switch]

 [-S connectType]

 [-t associationType]

 [-T targetRegistry]

 [-U identifierUUID]

 [-u registryUser]

 [-v verboseLevel]

 [-w bindPassword]

 [-x registryAlias]

 [-y registryType]

 [-z registryAliasType]

Table 29 on page 111 summarizes the objects and actions and the flags required

and optional for each.

Tips:

The eimadmin utility

110 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

v Each eimadmin command must include one action and one object type.

Depending on the object and action you are performing on it, EIM might require

additional parameters.

v Some options are for multi-value attributes, which you can specify more than

once. Other options are for single-value attributes, which you can specify once.

(If you repeat an option that is for a single-value attribute, eimadmin processes

only the first value it encounters in the command.) Other than this, the order in

which you specify parameters is not important.

v You can code the parameters of the eimadmin command in several ways:

– You can concatenate an action and an object, but must omit the embedded

hyphen:

-aD

– You can include both hyphens but must separate the two options with a

space:

-a -D

– In other words, the following is not valid because it includes both hyphens

and there is no space before -D:

-a-D

The following table summarizes required and optional flags for each object type and

action pair. You can specify the value for most options in an input file instead of

specifying it on the command line. See “Using an input file” on page 128 for more

information. See Table 33 on page 130 for the mapping of file labels with command

line options. Rule: The required connection flags, generally independent of the

specified object type and action, are shown in Table 29.

 Table 29. Required and optional flags

Object Action Required Optional Comments

D a b,d, h, w n, B Add a domain.

b and w can be omitted if bind information and

password are obtained from the RACF profile.

p d, h, b, w s Remove a domain. If the domain is not empty,

include ’-s RMDEPS’.

l d, h, b, w List domain(s). Specify -d’*’ to list all domains.

m d, h, b, w n, B Modify or add a domain attribute.

e d, h, b, w n, B Remove or clear a domain attribute.

R a r,y g, k, n, x, z, B Add a registry. The value specified for ’-r’ is

assumed to be a new system registry unless

’-g’ is also specified, in which case the ’-r’

value indicates a new application registry.

p r s Remove a registry.

l r y List registries. Return all registry entries in the

domain that match the specified ’-r’ value

search filter, which might contain the wild card

’*’.

m r k, n, x, z, B Modify or add a registry attribute, including a

registry alias.

e r k, n, x, z, B Remove or clear a registry attribute, including a

registry alias.

The eimadmin utility

Chapter 9. The eimadmin utility 111

Table 29. Required and optional flags (continued)

Object Action Required Optional Comments

I a i j, n, o Add an identifier.

p i Remove an identifier.

l i List an identifier by unique identifier name.

Return all identifier entries in the domain that

match the specified ’-i’ value search filter,

which might contain the wild card ’*’.

U Echo the identifier UUID followed by the unique

identifier name. The -U value search filter

cannot include the wild card ’*’.

j List an identifier by non-unique identifier name.

Return all identifier entries in the domain that

have a non-unique identifier matching the

specified ’-j’ value search filter, which might

contain the wild card ’*’.

m i j, n, o Modify or add an identifier attribute.

e i j, n, o Remove or clear an identifier attribute.

A a i, r, u or E, t n, o Add an association. You can repeat the ’-t’

option to add multiple associations types. Flags

’-n’ and ’-o’ are relevant only to TARGET

associations.

p i, r, u or E, t Remove an association. You can repeat the ’-t’

option to remove multiple associations types.

l i t List association(s). Return all associations in

the domain for specified ’-i’ unique identifier.

Specify a ’-t’ value to limit the entries returned

to the given association type.

m r, u or E, t n, o Modify or add an association attribute. Flags

’-n’ and ’-o’ are relevant only to TARGET

associations.

e r, u or E, t n, o Remove or clear an association attribute. Flags

’-n’ and ’-o’ are relevant only to TARGET

associations.

The eimadmin utility

112 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 29. Required and optional flags (continued)

Object Action Required Optional Comments

Y a t DOMAIN, T, u

or E

n, o Add a default domain policy association. For

association type -t DOMAIN only.

t REGISTRY, r,

T, u or E

n, o Add a default domain policy association. For

association type -t REGISTRY only.

r, one or more of

J,F, G

Add a filter policy. No association type is

specified.

t FILTER, r one

or more of J, F,

G, T, u or E

n, o, Add a filter policy and a filter policy

association. For association type -t, FILTER

only.

p t DOMAIN, T, u

or E

Remove a default domain policy association.

For association type -t DOMAIN only.

t REGISTRY, r,T,

u or E

Remove a default registry policy association.

For association type -t REGISTRY only.

r, one or more of

J, F, G

Remove a filter policy and it’s filter policy

associations. No association type is specified.

-t FILTER, r, one

or more of J, F,

G, T, u or E

Remove a filter policy association. For

association type -t FILTER only.

l t POLICY r, T List all types of policies for a domain, all

policies with the source registry, and/or all

policies with the target registry. For association

type -t POLICY.

t DOMAIN T, u or E List default registry policies. For association

type -t DOMAIN only.

t REGISTRY r, T, u or E List default registry policies. For association

type -t REGISTRY only.

t FILTER T, u or E, J, F,

G, r

List only filter policies with associations. For

association type -t FILTER only.

R, J, F, G List all filters policies. Associations are not

displayed. No association type is specified.

m T, u or E n, o Modify or add an attribute belonging to the

target user of a policy.

e T, u or E n, o Remove or clear an attribute belonging to the

target user of a policy.

C a c, q, f r Add access. For access type REGISTRY,

provide a specific ’-r’ registry value, or a wild

card ’*’ indicating access to all registries in the

domain.

p c, q, f r Remove access. For access type REGISTRY,

provide a specific ’-r’ registry value, or a wild

card ’*’ indicating access to all registries in the

domain.

l c r List access by type. For access type

REGISTRY, provide a specific ’-r’ registry

value, or a wild card ’*’ indicating access to all

registries in the domain.

q, f List access by user.

The eimadmin utility

Chapter 9. The eimadmin utility 113

Parameters

Actions

-a|-p|-l|-m|-e

This is the action you want to perform:

-a Add an object. (Create an object definition and its attributes.)

-p Purge an object. (Remove an object definition and its

attributes.)

-l List an object. (Retrieve an object definition and its attributes.)

-m Modify an attribute. (Alter an attribute of an existing object,

either by changing a single-value attribute or adding a

multi-value attribute.)

-e Erase an attribute. (Clear a single-value attribute or remove a

multi-value attribute.)

Object types

-D|-R|-I|-A|-C |-Y

This parameter specifies the object types on which to perform the

action:

-D A domain. This is a collection of identifiers, user registries, and

associations between identifiers and user IDs, and policies,

stored within an LDAP directory. (For more information about

EIM domains, see page “EIM domain” on page 8.)

-R A registry. This is the name of a user registry. Associations are

defined between identifiers and user IDs in the user registry. It

is a logical collection of user identities and policies. (For more

information, see page “EIM domain” on page 8.)

-I An identifier. This is the name of a person or entity participating

in an EIM domain. (For more information, see page “EIM

domain” on page 8.)

-A An association. This is a relationship between an identifier in

the EIM domain with a user ID. (For more information, see

page “EIM domain” on page 8.)

-C An access authority. This is an EIM-defined LDAP access

control group. (For more information, see page “EIM access

control” on page 30.)

-Y A policy. This is a relationship between a registry or domain and

a user identity in a target registry.

Processing controls, attributes, and connection values

Processing controls

Processing controls include the following:

-s switch

The switch specifies a value that affects the way the eimadmin

utility functions operate. You can specify the following value:

RMDEPS

Remove dependents when removing a domain or

system registry. This facilitates removing a domain by

first removing all identifiers and registries defined for

The eimadmin utility

114 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

the domain. It facilitates the removing a system registry

by first removing all applications registries defined for

the registry.

Attention: The eimadmin utility does not warn you

that dependents exist before removing them, so use

this switch carefully.

-U identifierUUID

The identifierUUID is the universally unique identifier form

of the EIM identifier. This flag is only valid with eimadmin

-lI.

-v verboseLevel

The verboseLevel is an integer from 1 to 10, that controls

the amount of trace detail that the eimadmin utility displays.

(It is for diagnosing problems in the eimadmin utility.) The

default value of 0 indicates no trace information. You can

specify an integer value from 1 to 10, from the least to

greatest amount of trace information.

 The utility checks the value and displays trace information

defined for the level and all lower levels. The following

levels trigger specific information:

v ″3″, which indicates EIM API call parameters and return

values

v ″6″, which indicates option values and input file labels

v ″9″, which indicates utility routine entry and exit

statements

Objects and attributes

Rule: Options are single-valued unless indicated otherwise.

 The section that follows explains required and optional attributes and their

parameters.

Tips:

v You can specify these attributes as command options or as fields in input

files. If you are specifying command options, you must enclose values

with imbedded blanks within quotation marks (″) or (’). Quotation marks

are optional for single-word values. Specifying a multi-word value without

quotation marks in effect truncates the command line options; values

after the first word are truncated.

v The following special characters are not allowed in registryName,

registryParent, or identifier:

, = + < > # ; \ *

Rule: Except where indicated, the parameters are single-value options. If

you specify an option more than once, the utility processes only the first

occurrence.

-B attribute

The attribute flag is used to add, modify, remove, or clear and attribute

for the domain. It may also enable or disable a function in the EIM

domain.

 The attribute flag specified with the domain object may have the

following value:

The eimadmin utility

Chapter 9. The eimadmin utility 115

POLICY

Enable or disable default domain and registry policies. By

default, default policies are disabled in the domain.

The attribute flag specified with the registy object may have one of the

following values:

LOOKUP

Enable or disable lookup operations

POLICY

Enable or disable default registry policies

By default, registries are enabled for lookup operations, but default

registry policies are disabled. Specifying -e deactivates the function.

Specifying -m activates the function.

-c accessType

The accessType specifies the scope of access authority that a user has

over the EIM domain. It must be one of the following values:

 ADMIN

Specifies administrative access.

REGISTRY

Specifies registry access. If you specify REGISTRY, you must

also specify a registry value (-r). The registry value can be a

specific registry name or it can be an asterisk (*) to indicate

access to all registries.

IDENTIFIER

Specifies identifier access.

MAPPING

Specifies mapping operations access.

-E certificate

The name of a file or dataset containing an X.509 certificate. The name

stored in the certificate will be used to create an association with an

identifier. The certificate may be DER or base 64 encoded. The base 64

encoded certificate may be in EBCIDIC or ASCII.

 When working with an source, target, or administrative associations, the

subject’s distinguished name, the issuer’s distinguished name, and the

public key info are extracted from the certificate and used to create the

registry user name for the association.

-f accessUserType

The accessUserType specifies the type for the access user name. It

must be one of the following:

DN

The accessUser is a distinguished name. (See page 118 for a

description of accessUser.)

KERBEROS

The accessUser is a Kerberos identity. (See page 118 for a

description of accessUser.)

-F issuerFilter

All or part of the issuer portion of a certificate filter policy name. When

The eimadmin utility

116 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

used without the -E certificate flag, the issuer filter must be a sequence

of relative distinguished names that make up a complete certificate filter

policy issuer name. For example:

O=A Certificate Authority,L=Internet

When used with the -E certficate flag, the issuer filter is a substring that

indicates what part of the issuer’s distinguished name from the

certificate should be used for the certificate filter policy’s issuer name.

For example if the certificate has the issuer’s distinguished name of the

following:

OU=Certified User,O=A Certificate Authority,L=Internet

and the issuerFilter value is O=, then the issuer portion of the certificate

filter policy name is:

O=A Certificate Authority,L=Internet

If the -F flag is omitted when working with certificate filter policies, the

certificate filter policy’s name will not contain an issuer filter.

-G certificateFilterTemplate

The name of a file or dataset containing an X.509 certificate. The name

stored in the certificate will be used to create a certificate filter policy.

The certificate may be DER or base 64 encoded. The base 64 encoded

certificate may be in EBCIDIC or ASCII.

 When working with a certificate filter policy, only the subject’s

distinguished name and issuer’s distinguished name are extracted from

the certificate. They are used as a template for the name of the

certificate filter policy. The -J subjectFilter and -F issuerFilter flags are

used to indicate what portion of the distinguished names to use.

-g registryParent

The registryParent specifies the name of a system registry. An

application registry is a subset of a system registry. If you are adding an

application registry, you must use the -r option and the -g option. The -r

value is the application registry you are defining. The -g option is the

preexisting system registry.

-i identifier

The identifier is a unique identifier name.

 Example:

John Day

-j otherIdentifier

The otherIdentifier specifies a non-unique identifier name.

 Example:

John

Note: You can specify this option multiple times to assign multiple

non-unique identifiers.

-J subjectFilter

All or part of the subject portion of a certificate filter policy name. When

used without the -E certificate flag, the subject filter must be a

sequence of relative distinguished names that make up a complete

certificate filter policy subject name. For example:

O=My Company,C=US

The eimadmin utility

Chapter 9. The eimadmin utility 117

When used with the -E certificate flag, the subject filter is a substring

that indicates what part of the subject’s distinguished name from the

certificate should be used for the certificate filter policy’s subject name.

For example if the certificate has the following subject distinguished

name:

CN=John Smith,O=My Company,C=US

and the subjectFilter value is C=, then the subject portion of the

certificate filter policy name is:

C=US

If the -J flag is omitted when working with certificate filter policies, the

certificate filter policy name will not contain a subject filter.

-k URI

The URI specifies the Universal Resource Identifier (URI) for the

registry (if one exists).

-n description

The description specifies any text (that you provide) to associate with

the domain, registry, identifier, or association.

Note: You can define a user description only for target associations.

-o information

The information specifies additional information to associate with an

identifier or association.

Note: You can define user information only for target associations.
You can specify this option multiple times to assign multiple pieces of

information.

-q accessUser

The accessUser specifies the user distinguished name (DN) or the

Kerberos identity with EIM access, depending on the accessUserType

specified.

-r registryName

The registryName specifies the name of a registry. When you add a

new registry, eimadmin considers the registry a system registry unless

you also specify the -g option. If you specify the -g option, eimadmin

considers the registry an application registry.

-t associationType

The associationType specifies the relationship between an identifier and

a registry or a policy type. It must be one of the following:

ADMIN

Indicates associating a user ID with an identifier for

administrative purposes.

SOURCE

Indicates that the user ID is the source (or from) of a lookup

operation.

TARGET

Indicates that the user ID is the target (or to) of a lookup

operation.

DOMAIN

Indicates a default domain policy.

The eimadmin utility

118 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

REGISTRY

Indicates a default registry policy.

FILTER

Indicates a certificate filter policy.

POLICY

Indicates any kind of policy.

Note: You can specify this option multiple times to define multiple

relationships.

-T targetRegistryName

The targetRegistryName specifies the name of a registry. This value is

used when creating or deleting a default registry policy.

-u registryUser

The registryUser specifies the user ID of the user defined in the

registry.

-x registryAlias

The registryAlias specifies another name for a registry.

 See “Working with registry aliases” on page 61 for information about

working with aliases. You can specify this option multiple times to

assign multiple aliases.

-y registryType

The registryType specifies the type of registry. Predefined types that

eimadmin recognizes include the following:

v RACF

v OS400

v KERBEROS (for case ignore)

v KERBEROSX (for case exact)

v AIX

v NDS

v LDAP

v PD (Policy Director)

v WIN2K

v X509

v LINUX

v DOMINOS

v DOMINOL

You can also create your own types by concatenating a unique OID

with one of the following two normalization methods:

v -caseIgnore

v -caseExact

(See “EIM registry definition” on page 13 for more information.)

-z registryAliasType

The registryAliasType specifies the type for a registry alias. You can

invent your own value or use one of the following suggested values:

v DNSHostName

v KerberosRealm

The eimadmin utility

Chapter 9. The eimadmin utility 119

v IssuerDN

v RootDN

v TCPIPAddress

v LdapDnsHostName

Note: For a set of command line options or single input data record,

the eimadmin utility recognizes only the first specification of

registryAliasType. However, the eimadmin utility does recognize

multiple registry aliases and associates all of them with the

single registryAliasType.

Connection values

The connection information needed by the utility includes the EIM domain

(-d) and its controlling server (-h), the identity (-b,-w; or -K,-P,-N) with which

to authenticate (bind) to the server, and the authentication method (-S).

 For object types other than domain (-D), specifying the domain, server and

bind identity is optional. If not specified, the information is retrieved from a

RACF profile. See “Storing LDAP binding information in a profile” on page

68 for more information.

Rule: If any of the connect information is specified, the full set of values

required for the connect type must be specified. Omitting one or more

values (but not all) results in an error. Table 30 shows the required and

optional values for each connect and host type when specified with the

eimadmin command:

 Table 30. Required connection values

Connection type

Host type

secure(ldaps://) /

non-secure(ldap://) Required values Optional values

SIMPLE or

CRAM-MD5

secure -d, -h, -b, -w, -K, -P -N

non-secure -d, -h, -b, -w

EXTERNAL secure -d, -h, -K, -P, -S -N

non-secure unsupported unsupported

GSSAPI secure -d, -h, -K, -P, -S -N

non-secure -d, -h, -S

Tips:

v Exceptions:

– The domain option (-d) is not required for domain functions if the value is specified

through an input file.

– An SSL key database file password or stash file (-P) is not required when -K specifies

a RACF key ring.

v The utility prompts for the simple bind password if required and -w is not specified on the

command line, and prompts for the SSL key database file password if required and -P is

not specified on the command line.

-S connectType

The connectType is the method of authentication to the LDAP server. It

must be one of the following values:

v SIMPLE (bind DN and password)

v CRAM-MD5 (bind DN and protected password)

v EXTERNAL (digital certificate)

The eimadmin utility

120 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

v GSSAPI (Kerberos)

If not specified, the connect type defaults to SIMPLE.

For connect type GSSAPI, the default Kerberos credential is used. This

credential must be established using a service such as kinit prior to

running eimadmin. For kinit and related information, refer to z/OS

Integrated Security Services Network Authentication Service

Administration.

-d domainDN

The domainDN is the full distinguished name (DN) of the EIM domain. It

begins with ’ibm-eimDomainName=’. It further consists of:

 v domainName — The name of the EIM domain you are creating, for

example: MyDomain

v parent distinguished name — The distinguished name for the entry

immediately above the given entry in the directory information tree

hierarchy, for example, ″o=ibm,c=us″.

Example:

ibm-eimDomainName=MyDomain,o=ibm,c=us

-h ldapHost

The ldapHost is the URL and port for the LDAP server controlling the

EIM data. The format is:

 Example:

ldap://some.ldap.host:389

ldaps://secure.ldap.host:636

-b bindDN

The bindDN is the distinguished name to use for the simple bind to

LDAP. The format is:

 Examples:

cn=Johns Admin

or

cn=Johns Admin,o=ibm,c=us

-w bindPassword

The bindPassword is the password associated with the bind DN (for the

LDAP bind).

-K keyFile

The keyFile is the name of the SSL key database file, including the full

path name. If the file cannot be found, it is assumed to be the name of

a RACF key ring which contains authentication certificates. This value is

required for SSL communications with a secure LDAP host (prefixed

ldaps://).

 Example:

/u/eimuser/ldap.kdb

-P keyFilePassword

The keyFilePassword is the password required to access the encrypted

information in the key database file. Alternatively, you can specify an

SSL password stash file for this option by prefixing the stash file name

with file://.

 Example:

The eimadmin utility

Chapter 9. The eimadmin utility 121

secret

or

file:///u/eimuser/ldapclient.sth

Note: The eimadmin utility prompts for a key file password if you

specify the name of a key database file for -K but not the -P

option on the command line.

-N certificateLabel

The certificateLabel identifies which certificate to use from the key

database file or RACF key ring. If this option is not specified, the

certificate marked as the default in the file or ring is used.

 Example:

eimcert

Authorization

The LDAP administrator has the authority to use the eimadmin utility and access to

all the functions it provides. EIM administrators can use the utility as long as:

v They have a bind distinguished name and password defined at the LDAP server

containing the EIM domain

v Their bind distinguished name has one of the EIM authorities:

– EIM administrator

– EIM registries administrator

– EIM registry X administrator

– EIM identifiers administrator

See “EIM access control” on page 30 for details about the specific tasks each

administrator can perform.

Messages

Eimadmin issues a message to prompt for a password or to indicate an error. Do

not expect to receive a message for successful completion unless you use an input

file. When processing records in an input file, eimadmin issues an informational

message for the start, stop, and a progress message for every 50 records.

Note: Eimadmin returns one or more data lines for list (-l) requests unless it finds

no matching EIM entries or the bind identity is not authorized to that data.

For eimadmin error messages, see Chapter 8, “Messages,” specifically ITY4xxx

messages.

Error codes

The eimadmin utility returns one of the following exit codes upon completion:

 Table 31. Eimadmin utility exit codes

Exit code Meaning

0 No errors encountered.

4 One or more errors encountered but, if you specified an input file, all

records were processed

8 A severe error occurred that caused processing to stop before reaching

the end of an input file, if specified.

The eimadmin utility

122 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Examples for working with policies

Creating an x.509 registry

The following creates an x.509 registry:

eimadmin -aR -h ldap://my.server

-b "cn=EIM admin,o=My Company,c=US" -w secret

-d "ibm-eimDomainName=My Employees,o=My Company,c=US"

-r myCertificateMappings -y X509

Enabling or disabling a registry for lookup or policy operations

A registry may be enabled for lookup operations by using the -mR action and -B

LOOKUP flag. The policies in a registry may be enabled by using -B POLICY with

the -mR action . For example:

eimadmin -mR -h ldap://my.server

-b "cn=EIM admin,o=My Company,c=US" -w secret

-d "ibm-eimDomainName=My Employees,o=My Company,c=US"

-r myCertificateMappings -B POLICY

A registry disabled for lookups by using -B LOOKUP with the -eR action. The

policies in a registry may be disabled by using -B POLICY with the -eR action. By

default lookups are enabled and policies are disabled.

Enabling or disabling a domain’s use of policies

eimadmin -mD -h ldap://my.server

-b "cn=EIM admin,o=My Company,c=US" -w secret

-d "ibm-eimDomainName=My Employees,o=My Company,c=US"

-B POLICY

Policies may be disabled for a domain by using the -eD action and -B POLICY flag.

By default, policies in a domain are disabled. Domains are always enabled for

lookup operations.

Creating an association using the name stored within a certificate

This examples assumes the certificate contains the following subject’s and issuer’s

distinguished names:

SDN: CN=John Day,O=My Company,C=US

IDN: OU=Certified User,O=A Certificate Authority,L=Internet

eimadmin -aA -h ldap://my.server

-b "cn=EIM admin,o=My Company,c=US" -w secret

-d "ibm-eimDomainName=My Employees,o=My Company,c=US"

-i "John Day"

-r myCertificateMappings -E certificate

-t admin

Listing an association that was created using a certificate

eimadmin -lA -h ldap://my.server

-b "cn=EIM admin,o=My Company,c=US" -w secret

-d "ibm-eimDomainName=My Employees,o=My Company,c=US"

-i "John Day" -t admin

This produces output such as the following:

unique identifier: John Day

 association: ADMIN

 registry: myCertificateMappings

 registry type: X509

The eimadmin utility

Chapter 9. The eimadmin utility 123

registry user: <SDN>CN=John Day,O=My

Company,C=US"</SDN>OU=VeriSign Class 1 Individual Subscriber,O=A

Certificate Authority,L=Internet<

/IDN><HASH_VAL>34238b120e3675f912e3d68495847392017632ac </HASH_VAL>

Removing an association using the name stored within a certificate

This examples assumes the certificate contains the following subject’s and issuer’s

distinguished names:

SDN: CN=John Day,O=My Company,C=US

IDN: OU=Certified User,O=A Certificate Authority,L=Internet

eimadmin -pA -h ldap://my.server

-b "cn=EIM admin,o=My Company,c=US" -w secret

-d "ibm-eimDomainName=My Employees,o=My Company,c=US"

-i "John Day"

-r myCertificateMappings -E certificate

-t admin

If you don’t have the original certificate, another approach to removing an

association involving a certificate user name is to copy the registry user name from

the output of a list association and provide it with the -u flag. For example:

eimadmin -pA -h ldap://my.server

-b "cn=EIM admin,o=My Company,c=US" -w secret

-d "ibm-eimDomainName=My Employees,o=My Company,c=US"

-i "John Day"

-r myCertificateMappings

-u "<SDN>CN=John Day,O=My Company,C=US</SDN>"\

"<IDN>OU=Certified User,O=ACertificate Authority,L=Internet</IDN>"\

"<HASH_VAL>34238b120e3675f912e3d68495847392017632ac</HASH_VAL>"

-t admin

Creating a domain policy

eimadmin -aY -h ldap://my.server

-b "cn=EIM admin,o=My Company,c=US" -w secret

-d "ibm-eimDomainName=My Employees,o=My Company,c=US"

-T zOSRegistry -u DAY

-t domain

Listing the domain policy

eimadmin -lY -h ldap://my.server

-b "cn=EIM admin,o=My Company,c=US" -w secret

-d "ibm-eimDomainName=My Employees,o=My Company,c=US"

-t domain

This produces output such as the following:

domain name: My Employees

 policy type: DOMAIN

 target registry: zOSRegistry

 target registry user: DAY

 domain policies: ENABLED

 target registry lookups: ENABLED

target registry policies: DISABLED

Deleting a domain policy

eimadmin -pY -h ldap://my.server

-b "cn=EIM admin,o=My Company,c=US" -w secret

-d "ibm-eimDomainName=My Employees,o=My Company,c=US"

-T zOSRegistry -u DAY

-t domain

The eimadmin utility

124 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Creating a registry policy

eimadmin -aY -h ldap://my.server

-b "cn=EIM admin,o=My Company,c=US" -w secret

-d "ibm-eimDomainName=My Employees,o=My Company,c=US"

-r zOSRegistry -T OS400Registry -u JOHNDAY

-t registry

Listing a registry policy

eimadmin -lY -h ldap://my.server

-b "cn=EIM admin,o=My Company,c=US" -w secret

-d "ibm-eimDomainName=My Employees,o=My Company,c=US"

-r zOSRegistry

-t registry

This produces output such as the following:

 source registry: zOSRegistry

 policy type: REGISTRY

 target registry: OS400Registry

 target registry user: JOHNDAY

 domain policies: ENABLED

 source registry lookups: ENABLED

 target registry lookups: ENABLED

target registry policies: DISABLED

Deleting a registry policy

eimadmin -pY -h ldap://my.server

-b "cn=EIM admin,o=My Company,c=US" -w secret

-d "ibm-eimDomainName=My Employees,o=My Company,c=US"

-r zOSRegistry -T OS400Registry -u JOHNDAY

-t registry

Creating a filter policy

This example assumes the file certificate contains the following subject’s and

issuer’s distinguished names:

SDN: CN=John Day,O=My Company,C=US

IDN: OU=Certified User,O=A Certificate Authority,L=Internet

eimadmin -aY -h ldap://my.server

-b "cn=EIM admin,o=My Company,c=US" -w secret

-d "ibm-eimDomainName=My Employees,o=My Company,c=US"

-r myCertificateMappings

-J "O=My Company,C=US"

-F "OU=Certified User,O=A Certificate Authority,L=Internet"

-T OS400Registry -u JOHNDAY

-t filter

or

eimadmin -aY -h ldap://my.server

-b "cn=EIM admin,o=My Company,c=US" -w secret

-d "ibm-eimDomainName=My Employees,o=My Company,c=US"

-r myCertificateMappings

-G certificate -J O= -F OU=

-T OS400Registry -u JOHNDAY

-t filter

A filter policy with the full subject’s and issuer’s distinguished names can be created

using just the certificate template. For example:

The eimadmin utility

Chapter 9. The eimadmin utility 125

eimadmin -aY -h ldap://my.server

-b "cn=EIM admin,o=My Company,c=US" -w secret

-d "ibm-eimDomainName=My Employees,o=My Company,c=US"

-r myCertificateMappings

-G certificate

-T OS400Registry -u JOHNDAY

-t filter

Listing the filter policy association

eimadmin -lY -h ldap://my.server

-b "cn=EIM admin,o=My Company,c=US" -w secret

-d "ibm-eimDomainName=My Employees,o=My Company,c=US"

-r myCertificateMappings

-J "O=My Company,C=US"

-F "OU=Certified User,O=A Certificate Authority,L=Internet"

-t filter

or

eimadmin -lY -h ldap://my.server

-b "cn=EIM admin,o=My Company,c=US" -w secret

-d "ibm-eimDomainName=My Employees,o=My Company,c=US"

-r myCertificateMappings

-G certificate -J O= -F OU=

-t filter

This produces output such as the following:

source registry: myCertificateMappings

 policy type: FILTER

 filter: <SDN>CN=John Day,O=My Company,C=US</SDN><IDN>O

U=Certified User,O=A Certificate Authority,L=Internet</IDN>

 target registry: OS400Registry

 target registry user: JOHNDAY

 domain policies: ENABLED

 source registry lookups: ENABLED

 target registry lookups: ENABLED

target registry policies: DISABLED

Deleting a filter policy

eimadmin -pY -h ldap://my.server

-b "cn=EIM admin,o=My Company,c=US" -w secret

-d "ibm-eimDomainName=My Employees,o=My Company,c=US"

-r myCertificateMappings

-J "O=My Company,C=US"

-F "OU=Certified User,O=A Certificate Authority,L=Internet" -T OS400Registry

-u JOHNDAY -t filter

or:

eimadmin -pY -h ldap://my.server

-b "cn=EIM admin,o=My Company,c=US" -w secret

-d "ibm-eimDomainName=My Employees,o=My Company,c=US"

-r myCertificateMappings -T OS400Registry -u JOHNDAY

-G certificate -J O= -F OU=

-t filter

Examples for listing various objects without an input file

v List a single domain by entering a command such as the following:

eimadmin -lD -h ldap://my.server -b "cn=EIM admin,o=My Company, c=US"

-d "ibm-eimDomainName=My Employees,o=My Company, c=US"

This produces output such as the following:

The eimadmin utility

126 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

domain name: My Employees

 domain DN: ibm-eimDomainName=My Employees,o=My Company, c=US

description: employees in my company

policies: DISABLED

 version: 2

v List a single registry by entering a command such as the following:

eimadmin -lR -r MyRegistry

This produces output such as the following:

 registry: MyRegistry

 registry kind: APPLICATION

 registry parent: MySystemRegistry

 registry type: RACF

 description: my racf registry

 URI: ldap://some.big.host:389/profileType=User,cn=RACFA,o=My Company, c=US

 registry alias: TCPGROUP

registry alias type: DNSHostName

 lookups: DISABLED

 policies: DISABLED

Another example is:

eimadmin -lR -h ldap://my.server

-b "cn=EIM admin,o=My Company,c=US" -w secret

-d "ibm-eimDomainName=My Employees,o=My Company,c=US"

-r myCertificateMappings

This produces output such as the following:

 registry: myCertificateMappings

 registry kind: SYSTEM

 registry type: X509

 lookups: DISABLED

 policies: DISABLED

v List identifiers by entering a command such as the following:

eimadmin -lI -h ldap://my.server

-b "cn=EIM admin,o=My Company, c=US" –w secret

-d "ibm-eimDomainName=My Employees,o=My Company, c=US"

-i "J.C.Smith"

This produces output such as the following:

unique identifier: J.C.Smith

 identifier UUID: d1284038asdflkae8-1395adfj379423294d

 other identifier: J.C.Smith

 other identifier: Joseph

 other identifier: Joe

 description: 004321

 information: D01

 information: 1990-04-11

v List an identifier using the identifier’s UUID by entering a command such as the

following:

eimadmin -lI -h ldap://my.server

-b "cn=EIM admin,o=My Company, c=US" –w secret

-d "ibm-eimDomainName=My Employees,o=My Company, c=US"

-U "d1284038asdflkae8-1395adfj379423294d"

This produces output such as the following:

d1284038asdflkae8-1395adfj379423294d J.C.Smith

v List target associations by entering a command such as the following:

The eimadmin utility

Chapter 9. The eimadmin utility 127

eimadmin -lA -h ldap://my.server

-b "cn=EIM admin,o=My Company, c=US" –w secret

-d "ibm-eimDomainName=My Employees,o=My Company, c=US"

-i "J.C.Smith" –t target

This produces output such as the following:

 unique identifier: J.C.Smith

 identifier UUID: d1284038asdflkae8-1395adfj379423294d

 registry: MyRegistry

 registry type: RACF

 association: target

 registry user: SMITH

 description: TSO

 information: 1989-08-01

 information: ADMIN1

v List accesses by entering a command such as the following:

eimadmin -lC -c admin

This produces output such as the following:

 access user: cn=JoeUser,o=My Company, c=us

 access user: cn=admin1,o=My Company, c=us

 access user: cn=admin2,o=My Company, c=us

Using an input file

You can use the eimadmin command to add objects and associated attribute

values to an EIM domain by specifying command-line options or specifying an input

file name.

Tip: The advantage of using a file to add information such as associated attributes

to an EIM domain is that you can input any number of entities of the same type with

a single call to eimadmin. For example, you might want define a large number of

identities that correspond to users in a platform-specific database such as RACF.

You can create your input file manually or export it from a database. For example,

you can use IRRDBU00 to extract records from the RACF database.

Tip: To pass the input file to eimadmin, use UNIX standard input (stdin).

The eimadmin utility interprets the data in the input file according to the command

line options you specify on an eimadmin command. For instance, if you use the -aI

option combination, this directs eimadmin to look for identifier information within the

file and add it to the EIM domain.

Input file requirements

The eimadmin requirements for the input file and its records include the following:

v The file must be sequential.

v By convention, each file line consists of a single record. (Only one record is

allowed per file line. Records cannot span lines.)

v Records have a maximum length of 10,000 characters.

v Records contain column-delimited fields. (The label line defines these fields. See

“The label line” on page 129 for more information.) The fields of each record

contain character values representing a single object and optional associated

attributes.

The eimadmin utility

128 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Tip: If you are using an input file to add identifiers, each record should contain a

value that can serve as a unique EIM identifier for the user. IBM recommends that

you sort the records by the field that is unique. This unique identifier might be an

employee name or number, but it is unlikely to be the user ID for a registry. The

identifier chosen must be unique within the EIM domain because associated user

IDs cannot be unique across multiple registries.

If you have previously populated your EIM domain with unique identifiers, the

unique identifiers for which you are adding associations or attributes in your input

records should match these unique identifiers.

After you sort the records by the unique identifier fields, check the results to verify

that non-blank values appear in this field for each record and that the values are

not duplicated (unless this is intentional). The eimadmin utility generates an error

each time it tries to add an object that has been previously defined.

Input file contents

The file can include:

v Comments; to include a comment line, use ″#″ as the first non-blank character in

the line.

Note: The eimadmin utility ignores blank lines and comment lines.

v Upper and lower case (The eimadmin utility preserves lettercase.)

v Blanks (Whitespace is any combination of blanks, tabs, and other ’invisible’

control characters.

Note: Avoid using whitespace characters other than blanks because the

eimadmin utility does not consider them when it performs positional

parsing. The eimadmin utility truncates leading and trailing whitespace

within fields when it is parsing input values. The eimadmin utility does not

process anything in a field that contains all whitespace.)

 Table 32. Hexadecimal character values for invisible control characters

EBCIDIC

Hexadecimal

value

Description

05 HT — tab

0B VT — vertical tab

0C FF — form feed

0D CR — carriage return

The label line

The first non-blank, non-comment line in the input file must be the label line. This

consists of one or more labels that identify starting and ending positions for

column-delimited fields in subsequent lines. For details about names of labels, see

Table 33 on page 130.

Example:

Suppose you want to input employee records of last name, first name, and

employee number.

The eimadmin utility

Chapter 9. The eimadmin utility 129

Your data might look like the information in the following grid. (The top line of the

grid is not part of the data and is there simply to show column numbers):

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0 0 0 1 1 0 0 0 B l a c k s t o n e A u g u s t i n e

0 0 0 2 1 7 3 4 B r a d y B a r b a r a

0 0 0 3 1 1 2 4 L l o y d C a r o l

0 0 0 4 1 7 4 5 M a r t i n s o n D e b b i e

(The record is 30 characters long. The first four slots are a four-digit sequence

number followed by a blank. The employee numbers start in column 6 and end in

column 10. The last names start in column 11 and end in column 20. The first

names start in column 22 and end in column 30.)

Your label line would look like the following:

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

I U ; U N ; I N ;

The labels in the preceding label line are:

v ″IU″ represents a unique identifier (employee number)

v ″UN″ represents the registry user name (last name)

v ″IN″ represents a non-unique identifier (first name)

These labels mark the starting positions of the fields for employee number, last

name, and first name. The semicolons mark the ending positions for these fields.

See “Example for adding a list of identifiers to an EIM domain” on page 132 for a

more complex example.

Example — Using eimadmin with the tabular output of SMF Unload: The audit

records cut by EIM contain the UUID of identifiers and policies. eimadmin can be

used to get the friendly name associated with the UUID.

First, generate the tabular output using SMF Unload. The edit the tabular output so

that the ’UU’ label appears above the UUID. For this example, assume the data is

in the HFS file smfdata.

Then run the following eimadmin command:

eimadmin -lI -h ldap://my.server -b "cn=EIM admin,o=My Company, c=US"

-d "ibm-eimDomainName=My Employees,o=My Company, c=US" –w secret

<smfdata

The output from the eimadmin command will list a mapping between the UUIDs and

the unique identifiers.

 Now that you have seen an example of a few of the labels, it is time to look at a

comprehensive list of the labels. The following table summarizes the labels

associated with object types and command line options associated with these

labels.

 Table 33. Summary of associated labels

Object Types Associated Labels Command Line

Options

Descriptions

Domain DN -d Domain distinguished name

DD -n Domain description

DB -B Domain attribute

The eimadmin utility

130 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 33. Summary of associated labels (continued)

Object Types Associated Labels Command Line

Options

Descriptions

Registry RN -r Registry name

RT -y Registry type

RP -g Parent system registry

RU -k Universal resource identifier

RD -n Registry description

RA -x Registry alias (multi-value)

RZ -z Registry alias type

RB -B Registry attribute

Identifier IU -i Unique identifier

IN -j Non-unique identifier (multi-value)

ID -n Identifier description

II -o Identifier information (multi-value)

UU -U Identifier UUID

Association IU -i Unique identifier

RN -r Registry name

UN -u Registry user name

UC -E Certificate file name

UT -t Association type (multi-value)

UD -n User description

UI -o User information (multi-value)

Policy PT -t Policy type

RS -r Source Registry Name

RG -T Target Registry Name

UN -u Target User Name

UD -n User Description

UI -o User information (multi-value)

UC -E Certificate File name

FT -G Certificate Filter Template File Name

FS -J Subject Filter

FI -F Issuer Filter

Access authority CT -c Access authority type

CU -q Access user distinguished name

CS -f Access user type

RN -r Registry name

Rules: Here are the rules for creating a label line:

v Indicate the start of each field by putting a label (from column two of Table 33 on

page 130) in the starting column position. Indicate the end of each field by

putting a semicolon in the ending column position.

The eimadmin utility

Chapter 9. The eimadmin utility 131

v Separate labels and semicolons with zero or more blanks. (Do not use other

white-space characters, such as tabs, because eimadmin interprets them as

single blank characters, so a record that visually appears to have correct column

positioning might be incorrect for processing.)

v You can specify multi-value labels more than once; for a multi-value label, each

value is considered for processing. If you specify more than one value for a

single-value label, eimadmin processes only the first value you specify. (See the

Description column of Table 33 on page 130 for information about which labels

are multi-value.)

Processing differences between command-line options and input

files

If you specify information both as command-line options and with an input file,

command-line values have priority over input file values. As previously discussed, a

single-value option can have only one value. If you specify more than one value,

eimadmin processes only the first value. A multi-value option can have more than

one value. If you specify more than one value, eimadmin processes all of these

values.

If you specify information for a single-value option both within a command and in an

input file, eimadmin processes the information on the command rather than that in

the file. (This is assuming the value is relevant to the object type and action

combination that you specify.)

Note: However, if you specify information for a multi-value option both in a

command and in a file, eimadmin processes all the values, processing those

in the command first. The eimadmin utility ignores command line options or

input file labels that are not appropriate for the object type and action

combination that you specify.

The output file

The eimadmin utility generates messages to stdout to indicate the following:

v The eimadmin utility version the date and start time, and command options and

parameters (as shown in the following example line. See Step 3 on page 133 for

the full example)

ITY4020 eimadmin (v1) started Mon May 20 10:50:58 2002 with options eimadmin -lI

v If called to list objects or attributes, the requested information retrieved from the

EIM domain

v Whether processing ended normally or stopped due to error

v A summary of processed records (successful and unsuccessful)

The error file

If any errors occur during processing, the eimadmin utility generates error

messages to stderr. Failing records are echoed to the output in their entirety. You

can correct the failing records and rerun them through the utility. See page

Chapter 12, “EIM header file and example,” on page 395 for a sample error file.

Example for adding a list of identifiers to an EIM domain

1. Create a file named ’employees.txt’ containing identity information in a format

similar to the following:

Sample eimadmin input file

User id Birth Type Created First Nickname Full Dept Hire Empl

date by name name date num

#

The eimadmin utility

132 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

UN ;UI ; UD ;UI ; IN ; IN ;IU ; II ; II ; ID ;

021P SMITH 1959-08-01 TSO ADMIN1 NO NO Joseph Joe J.C.Smith DEPTD01 14:20:16 1990-04-11 004321

022P JONES 1968-05-03 TSO ADMIN1 NO NO Robert Bob R.Z.Jones DEPTD01 16:01:57 1988-02-16 001234

023F JONES2 1965-10-15 BATCH ADMIN4 NO NO Robert R.Z.Jones DEPTD01 14:12:20 1988-02-16 001234

024P SMITH 1973-11-26 ADMIN3 NO NO Joseph Joe J.Smith 1990-04-11 004321

025F BROWN 1970-04-11 TSO ADMIN3 NO NO Charles Chuck DEPTD01 09:47:57 1995-01-10 003210

The following entry was added manually 11/08/01 by ADMINX

026P ADMINX James Jim J.Z.Clark D03 2001-12-22 000012

Notes:

a. The exported database can contain information that the eimadmin utility

does not use. The two columns with ″NO″ and the column with times

between the two II values are such information.

b. There can be only one UN (registry user name), UD (user description), IU

(unique identifier), and ID (identifier description).

c. There can be multiple values for UI, IN, and II (user information, non-unique

identifier, and identifier information, respectively).

2. Add the identifiers by using the following eimadmin command:

eimadmin

-aI

-h ldap://my.server

-b "cn=EIM admin,o=My Company, c=US"

-d "ibm-eimDomainName=My Employees,o=My Company, c=US" < employees.txt

> addemployees.out 2> addemployees.err

Note: Since the -w flag was omitted, the issuer of the eimadmin command is

prompted for the password.
If the unique identifiers were not previously defined, the output file is the

following:

ITY4020 eimadmin (v1) started Mon May 20 10:50:58 2002

eimadmin

-aI

-h ldap://my.server

-b "cn=EIM admin,o=My Company, c=US"

-d "ibm-eimDomainName=My Employees,o=My Company, c=US"

ITY4022 6 records processed -- 4 successful; 2 failed.

ITY4021 Processing ended normally.

The error file addemployees.err contains the following:

ITY4030 Service eimAddIdentifier() returned error 117 -- ITY0019 EIM identifier already exists by this name.

ITY4028 Error occurred while processing input line 9.

023F JONES2 1985-10-15 BATCH ADMIN4 NO NO Robert R.Z.Jones DEPTD01 14:12:20 1988-02-16 001234

ITY4012 Unique identifier not specified.

ITY4028 Error occurred while processing input line 11.

025F BROWN 1990-04-11 TSO ADMIN3 NO NO Charles Chuck DEPTD01 09:47:57 1995-01-10 003210

3. List the identifiers using the same input file by entering the following command:

eimadmin

-lI

-h ldap://my.server

-b "cn=EIM admin,o=My Company, c=US"

-d "ibm-eimDomainName=My Employees,o=My Company, c=US" < employees.txt

> listids.out 2> listids.err

The file listids.out contains output such as the following:

ITY4020 eimadmin (v1) started 2001/10/30 at 15:09:00 with options eimadmin -lI

 -hldap://my.server -b "cn=EIM admin,o=My Company, c=US"

 -d "ibm-eimDomainName=My Employees,o=My Company, c=US"

unique identifier: J.C.Smith

 other identifier: J.C.Smith

 other identifier: Joseph

 other identifier: Joe

The eimadmin utility

Chapter 9. The eimadmin utility 133

description: 004321

 information: D01

 information: 1990-04-11

unique identifier: R.Z.Jones

 other identifier: R.Z.Jones

 other identifier: Robert

 other identifier: Bob

 description: 001234

 information: D01

 information: 1988-02-16

unique identifier: R.Z.Jones

 other identifier: R.Z.Jones

 other identifier: Robert

 other identifier: Bob

 description: 001234

 information: D01

 information: 1988-02-16

unique identifier: J.Smith

 other identifier: J.Smith

 other identifier: Joseph

 other identifier: Joe

 description: 004321

 information: 1990-04-11

unique identifier: J.Z.W.Clark

 other identifier: J.Z.W.Clark

 other identifier: James

 other identifier: Jim

 description: 000012

 information: D03

 information: 2001-12-22

.

.

.

ITY4022 6 records processed -- 6 successful; 0 failed.

ITY4021 Processing ended normally.

While a unique identifier is required for the add action, the eimadmin list action

accepts a non-unique identifier when a unique identifier is not provided. The

utility searches for entries with the non-unique identifier ’Charles’, the first

non-unique identifier that appears in the data line. No list output is returned for

this line because no matches are found in the domain.

Notes:

a. Notice that the entry for ’R.Z.Jones’ is duplicated in the list output. This

occurs because there are two data lines with the same unique identifier. The

utility processes each line separately, in order of appearance, without

recognizing similarities between them.

b. Also notice within each identifier entry that a non-unique value (″other

identifier″) duplicates the unique identifier value. This is the manner in which

the information is stored in LDAP. Do not attempt to remove the duplicate

value.

4. You might want to create a number of default registry policies or certificate filter

policies using the eim admin input file capability. The following example creates

default registry policies for three registry: REG1, REG2, and REG3X509. The

following input file, registryPolicies defines the default policies:

The eimadmin utility

134 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

default registry policies for REG1, REG2, and REG3X509

RS - Source registries

RG - Target registries

UN - User names in the target registries

PT - Policy type

RS ; RG ; UN ; PT ;

REG1 REG2 PUBLIC REGISTRY

REG1 REG3X509 PUBLIC REGISTRY

REG2 REG1 PUBLIC

REG2 REG3X509 PUBLIC REGISTRY

REG3X509 REG1 PUBLIC REGISTRY

REG3X509 REG2 PUBLIC REGISTRY

and the following command will cause the updates to be made to the EIM

domain:

eimadmin -aY -d ibm-eimDomainName=My Employees, o= My Company, c=US -h

ldap://my.server -b "cn=EIM admin,o=My Company,c=US" -w secret <

registryPolicies

The REG3X509 registry is an X509 registry so a number of certificate filter

policies are defined as well. The following input file, registryFilterPolicies defines

the default certificate filter policies:

default certificate filter policies for an X509 registry

RS - Source registry

FI - Issuer’s filter value

RG - Target registry

UN - User name in the target registry

PT - Policy type

RS ; FI ; RG ; UN ; PT ;

REG3X509 C=US REG1 PUBLIC FILTER

REG3X509 C=US REG2 PUBLIC FILTER

REG3X509 O=A Certificate Authority, L=Internet REG1 PUBLIC FILTER

REG3X509 O=A Certificate Authority, L=Internet REG2 PUBLIC FILTER

and the following command will cause the updates to be made to the EIM

domain:

eimadmin -aY -d ibm-eimDomainName=My Employees, o= My Company, c=US -h

ldap://my.server -b "cn=EIM admin,o=My Company,c=US" -w secret <

registryFilterPolicies

Before the policies take effect, the domain and registries must have policies

enabled. The following command will enable policies at the domain level:

eimadmin -mD -B POLICY -d ibm-eimDomainName=My Employees, o= My Company, c=US

-h ldap://my.server -b "cn=EIM admin,o=My Company,c=US" -w secret

Another input file, registryEnable, can be used to enable policies for each

registry in the domain:

enable the policies in the registries

RN - Registry name

RB - Registry attribute

RN ; RB ;

REG1 POLICY

REG2 POLICY

REG3X509 POLICY

and the following command will make the udpates to the registries:

eimadmin -mR -d ibm-eimDomainName=My Employees, o= My Company, c=US -h

ldap://my.server -b "cn=EIM admin,o=My Company,c=US" -w secret < registryEnable

5. Associations between identifiers and certificates can be created by using the

input file capability of eimadmin. In this example, the current directory contains

three files with the certificates of three users. The input file, certMappings

contains the information required to define the relationships with EIM identifiers:

The eimadmin utility

Chapter 9. The eimadmin utility 135

Mappings between identifiers and certificates in files

IU - Unique identifier

UC - Certificate file name containing the user’s certificate

IU ; UC ;

John Day ./JohnDayCert

Jill Jack ./JillJackCert

Jane Day ./JaneDayCert

By issuing the following command, the source associations between the users

name in the certificates and their EIM identifiers will be added to the domain:

eimadmin -aA -r REG3X509 -s SOURCE -d ibm-eimDomainName=My Employees, o= My

Company, c=US -h ldap://my.server -b "cn=EIM admin,o=My Company,c=US" -w secret <

certMappings

Note: In order for this to work, the registry must have a registry type of X509.

Using eimadmin with the tabular output of SMF Unload

The audit records cut by EIM contain the UUID of identifiers and policies. eimadmin

can be used to get the friendly name associated with the UUID.

First, generate the tabular output using SMF Unload. Then edit the tabular output

so that the ’UU’ label appears above the UUID. For this example, assume the data

is in the HFS file smfdata.

Then run the following eimadmin command:

eimadmin -lI -h ldap://my.server -b "cn=EIM admin,o=My Company, c=US"

-d "ibm-eimDomainName=My Employees,o=My Company,c=US" –w secret

<smfdata

The output from the eimadmin command will list a mapping between the UUIDs and

the unique identifiers.

The eimadmin utility

136 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Chapter 10. EIM Auditing

Auditing is an important part of keeping your enterprise secure. Applications which

allow you to use user ID mappings must be kept secure to locate an end user’s

identity on a server system and trust that the end user has been correctly

authenticated at the client. This means that the data mapped via EIM must be kept

accurate and secure. To facilitate this, EIM allows you to perform auditing functions

on select EIM APIs.

Auditing EIM events

Existing RACF commands are used to identify what events to log and when to log

them. The EIM audit log records are written to SMF as type-83 subtype 2 records.

Authentication and authorization failures are displayed on the security console and

stored in the caller’s job log. The SMF type-83 log records containing EIM events

can be unloaded using the RACF SMF Data Unload utility for further analysis by

auditing tools.

Categories of EIM events

EIM events are divided into three groups of resources:

v EIM Connect (including disconnects)

v EIM Admin

v EIM Lookup

Each group of events is qualified by whether or not the specific API was successful,

if it failed because of an authentication or authorization failure, or if the data was

not found. The controls a security administrator or auditor can use to implement a

security policy are defined using grouping of events as well. Each group of events

is controlled by a resource in the RAUDITX class. A profile in the RAUDITX class

can be defined with the appropriate auditing options. The resources are:

v EIM.domain name.CONNECT

v EIM.domain name.ADMIN

v EIM.domain name.LOOKUP

Some events always cause a log record to be written. For example, attempts to

connect with an EIM domain controller that fail because the bind user could not be

authenticated.

 Table 34. Events which are always logged

Resource in the RAUDITX class Events

EIM.domain name.CONNECT Connects, disconnects with an EIM domain

controller

EIM.domain name.ADMIN All loggable EIM administration tasks, such

as creating, deleting, modifying, or listing

domains, identifiers, associations, and

policies

EIM.domain name.LOOKUP EIM lookup operations that retrieve mappings

from an EIM domain, such as

eimGetTargetFromSource,

eimGetTargetFromIdentifier, or

eimGetAssociatedIdentifiers

© Copyright IBM Corp. 2002, 2008 137

Profiles can be defined in the RAUDITX class that can apply to all events or a

subset.

 Table 35. Covering profiles in the RAUDITX class and descriptions

EIM.* All EIM events, all domains

EIM.domain.name.* All EIM events in a particular domain

EIM.domain name.CONNECT All attempts to bind/unbind with a particular

domain; bind failures are always logged

EIM.domain name.ADMIN All admin events with a particular domain

EIM.domain name.LOOKUP All lookup events with a particular domain

The domain name used in the resource name and RACF profile is the same as the

EIM domain name with the following differences:

v all blanks, commas, parenthesis, semicolons, asterisks, percent signs, and

ampersands are removed

v the compressed name is truncated if it exceeds 234 characters

v lowercase characters are treated the same as uppercase

Generics must be active for the RAUDITX class before the profiles EIM.* and

EIM.domain name.* profiles are created. Use the SETROPTS GENERIC(RAUDITX)

command to activate generics.

The log records that are generated can be extracted from the SMF dataset by using

the RACF SMF Data Unload tool to convert the logged data into a format that can

be analyzed using a relational database manager or a tool like DFSORT ICETOOL

or into an XML document.

Each EIM API belongs to one of these resource names. The following table lists the

APIs and the resource name they belong to.

 Table 36. EIM Event Categories

EIM API Resource Name

EIM. domain

name.

CONNECT

EIM. domain

name. ADMIN

EIM. domain

name. LOOKUP

No logging

performed

eimAddAccess X

eimAddApplicationRegistry X

eimAddAssociation X

eimAddIdentifier X

eimAddPolicyAssociation X

eimAddPolicyFilter X

eimAddSystemRegistry X

eimChangeDomain X

eimChangeIdentifier X

eimChangeRegistry X

eimChangeRegistryAlias X

eimChangeRegistryUser X

eimConnect X*

138 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 36. EIM Event Categories (continued)

eimConnectToMaster X*

eimCreateDomain X

eimCreateHandle X

eimDeleteDomain X

eimDestroyHandle X***

eimErr2String X

eimFormatPolicyFilter X

eimFormatUserIdentity X

eimGetAssociatedIdentifiers X**

eimGetAttribute X

eimGetRegistryNameFromAlias X

eimGetTargetFromIdentifier X**

eimGetTargetFromSource X**

eimGetVersion X

eimListAccess X

eimListAssociations X

eimListDomains * X

eimListIdentifiers X

eimListPolicyFilters X

eimListRegistries X

eimListRegistryAliases X

eimListRegistryAssociations X

eimListRegistryUsers X

eimListUserAccess X

eimQueryAccess X

eimRetrieveConfiguation X

eimRemoveAccess X

eimRemoveAssociation X

eimRemoveIdentifier X

eimRemovePolicyAssociation X

eimRemovePolicyFilter X

eimRemoveRegistry X

eimSetAttribute X

eimSetConfigurationExt X

Notes:

1. * Authentication failures are always logged for the EIM connect APIs.

2. ** Not found conditions are logged in addition to success and failure for the

lookup APIs.

3. *** eimDestroyHandle events are only logged after a successful connect.

Chapter 10. EIM Auditing 139

How events are audited

Events can be audited by one of the following methods:

v setting SETROPTS LOGOPTIONS

v enabling auditing for resources in the RAUDITX class

v enabling auditing for a specific user

There are a number of setup steps that must be performed by the security

administrator before EIM events are logged. The user id of the EIM application must

be given the authority to use the auditing service.

RDEFINE FACILITY IRR.RAUDITX UACC(NONE)

PERMIT IRR.RAUDITX CLASS(FACILITY) ID(userid) ACCESS(READ)

SETR CLASSACT(FACILITY)

With this basic configuration, failures to connect to the EIM domain because of bind

failures due to bad passwords are logged.

The security administrator or auditor can issue additional commands to control

logging:

v Activate (or deactivate) logging for all EIM events involving all EIM domains by

using SETROPTS LOGOPTIONS for the RAUDITX class. The RAUDITX class

must be active for the SETROPTS LOGOPTIONS settings to take effect:

SETROPTS LOGOPTIONS(auditing-level(RAUDITX))

where the auditing-level can be ALWAYS, NEVER, SUCCESSES, FAILURES, or

DEFAULT.

v Activate or deactivate logging for a subset of EIM events by using SETROPTS

LOGOPTIONS(DEFAULTS(RAUDITX). The commands are:

SETROPTS LOGOPTIONS(DEFAULT(RAUDITX))

RDEFINE RAUDITX profile-name UACC(NONE)

PERMIT profile-name CLASS(RAUDITX) ID(user or group) ACCESS(READ)

SETROPTS CLASSACT(RAUDITX)

SETROPTS RACLIST(RAUDITX) or SETROPTS RACLIST(RAUDITX) REFRESH

v Activate or deactivate logging for a particular user:

ALTUSER user id UAUDIT

Generic profile names may be used when generics are activated for the RAUDITX

class:

SETR GENERIC(RAUDITX)

This is one approach for activating logging of EIM events. Consult with your security

administrator for other options. See z/OS Security Server RACF Command

Language Reference and z/OS Security Server RACF Security Administrator’s

Guide for more information on the RACF commands, general resources, RACLIST

processing, and generic profile processing.

SETROPTS LOGOPTIONS activates or deactivates event logging for all resources

in a class. The auditor must have the RACF authority required by the SETROPTS

command. See z/OS Security Server RACF Command Language Reference for

more details on the authorities required to issue commands.

Following are the combinations of SETROPTS commands that can be used to

enable or disable auditing for all EIM events in all EIM domains:

140 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 37. SETROPTS options for audit enablement

Command Results Explanation

SETROPTS

LOGOPTIONS(NEVER(RAUDITX))

No log records

except

authentication

connection failures

No log records are

written for any

domain except for

connection failures.

SETROPTS

LOGOPTIONS(ALWAYS(RAUDITX))

Successful or failure

authorization or

authentication

Log records are

written for all EIM

events in all

domains.

SETROPTS

LOGOPTIONS(SUCCESSES(RAUDITX))

Successful and

connection failure

records

Success records are

written for all EIM

events in all

domains.

Note: This applies

to all resources in

the RAUDITX class.

SETROPTS

LOGOPTIONS(FAILURES(RAUDITX))

Failure records Failure records are

written for all EIM

events in all

domains.

SETROPTS

LOGOPTIONS(DEFAULTS(RAUDITX))

None. The decision to log

is determined by

profiles in the

RAUDITX class.

Note: When you enable auditing using SETROPTS, you are enabling auditing for

all applications that use the RAUDITX class, not just EIM.

Auditing can also be enabled and controlled for a specific profile. In this case, the

audit settings set by the profile owner or auditor are used to determine when and

what to audit. Therefore, the profile owner has more direct control over auditing of

their profiles.

 Table 38. Enabling EIM Auditing Using Profiles

Commands Results Explanation

RDEFINE RAUDITX EIM.* AUDIT(...)

or RALTER RAUDITX EIM.*

GLOBALAUDIT(...)

Success and/or failure Log records are written for all EIM

events for all users in all domains.

RDEFINE RAUDITX EIM.*.CONNECT

AUDIT(...) or RALTER RAUDITX

EIM.*.CONNECT GLOBALAUDIT(...)

Connect success and failure.

Disconnect success.

Log records are written only for

connect / disconnects for all users in

all domains.

RDEFINE RAUDITX EIM.*.ADMIN

AUDIT(...) or RALTER RAUDITX

EIM.*.ADMIN GLOBALAUDIT(...)

Admin success and/or failure. Log records are written for any

administration related event in any

domain.

Note: Only failures are written for list

events or retrieve events.

RDEFINE RAUDITX EIM.*.LOOKUP

AUDIT(...) or RALTER RAUDITX

EIM.*.LOOKUP GLOBALAUDIT(...)

Lookup success and/or failure. Log records are written for any lookup

related event in any domain.

Chapter 10. EIM Auditing 141

Generics must be active for the RAUDITX class before the profiles EIM.*,

EIM.*.CONNECT, EIM.*.ADMIN, or EIM.*.LOOKUP are created. Use the

SETROPTS GENERIC(RAUDITX) command to enable generics.

Additionally, an auditor can activate logging of events for a specific user by issuing

the following:

ALTUSER userid UAUDIT

In this case, all events for this user are audited, including non-EIM events.

Regardless of the level at which auditing is enabled, the following events are

always audited:

EIM.domain name.CONNECT

All connection authentication failures with an EIM domain controller

What goes into an audit record

For each audited event, the following information is captured:

v information about the event:

– general event code

– the event code qualifier (success, bind failure, not found)

– the name of the EIM API that logged the event (C/C++ API name)

v the EIM domain URL

v the user

– the bind user name

– the current RACF user ID

v the input parameters to the EIM API and in some cases additional information

about the event, such as the UUID for the EIM identifier

v the results of the event in some cases such as the user IDs returned by an

eimGetTargetFromSource

v the reasons the event was logged (EIM required logging of authentication

failures, SETROPTS LOGOPTION settings, the audit settings on the RACF

profile that covers the resource name representing the event)

v a link value which is used to identify multiple log records that were generated for

a single event

Working with audit records

The EIM events are logged in an SMF dataset as type 83 subtype 2 records. The

log record is a mixture of binary and EBCDIC data. The general format of SMF

Type 83 records is described in z/OS Security Server RACF Macros and Interfaces,

in the chapter ″SMF records″, section ″Record type 83: Security Events.″

You can use the RACF SMF Unload utility to reformat the EIM SMF type 83

subtype 2 records for easier analysis. The audit records can be used to identify

access violations or determine patterns of usage from your users. These audit

records can be in the following different forms:

v A tabular format, suitable for import to a relational database manager.

v eXtensible Markup Language (XML) documents

142 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Information on how to use the RACF SMF Unload utility can be found in z/OS

Security Server RACF Auditor’s Guide. This book describes how the reformatted

data can be further processed by DB2, DFSORT, and XML applications.

The next sections gives details on the different formats of the EIM event data:

v The layout of the EIM data contained in an SMF type 83 subtype 2 record

v The schema definition for the EIM XML elements

v Field names and column positions of the EIM data in the tabular output and

sample DB2 statements for loading the EIM data into DB2

The SMF Record Type 83 subtype 2 records

When auditing is enabled for EIM events, SMF record type 83 subtype 2 records

are recorded in the SMF dataset. Each logged EIM event has a unique event code

with a corresponding event code qualifier, or value that indicates if the event

succeeded, failed because the end user was not authorized, or if the requested

data was not found. The event code and event code qualifiers are described in the

following table.

 Table 39. EIM event codes

Event

Command /

Service

Code Qualifier

Dec (Hex) Description

Relocate type

sections

(possible

SMF83TP2 /

SMF83DA2

values)

1(1) EIM Connection

Events

0(0) Successful

connect to the

domain controller

or a

disconnection

from the domain

controller

Common

relocates,

100-105

3(3) Not authorized to

connect to the

domain controller

2(2) EIM Lookup

Events

0 (0) Successful

request

Common

relocates,

100-103,

106-113, 119,

127, 131, 136

1(1) Insufficient

authority to

retrieve EIM data

2(2) Mapping not

found or the user

was not

authorized to

access the EIM

data

Chapter 10. EIM Auditing 143

Table 39. EIM event codes (continued)

Event

Command /

Service

Code Qualifier

Dec (Hex) Description

Relocate type

sections

(possible

SMF83TP2 /

SMF83DA2

values)

3(3) EIM

Administrative

Events –

Domain,

Registry, Access

0 (0) Successful

request

Common

relocates,

100-105,

117-120, 122,

125, 128-134

1(1) Insufficient

authority to

modify the EIM

domain or

retrieve

information from

the domain

3(3) Not authorized to

connect to the

EIM domain

controller

4(4) EIM

Administrative

Events –

Identifiers,

Associations,

Policies

0(0) Successful

request

Common

relocates,

100-103,

106-113, 119,

120, 123-127

131, 135, 136,

137

1(1) Insufficient

authority to

modify the EIM

domain or

retrieve

information from

the domain

For more information on SMF records and the relocates that are common to all

SMF Type 83 subtype 2 and above records, see z/OS Security Server RACF

Macros and Interfaces, section ″Record type 83: Security Events.″

The following are the EIM specific extended relocates:

 Table 40. EIM extended relocates

Data Type

(SMF83TP2)

Max Data

Length

(SMF83DL2)

Format Audited

by

Event

Code

Description

Dec Hex Dec Hex

100 64 128 80 EBCDIC 1, 2, 3,

4

EIM API Name

101 65 512 200 EBCDIC 1, 2, 3,

4

Domain URL

102 66 64 40 EBCDIC 1, 2, 3,

4

Connection Type - SIMPLE, SIMPLE

AND CRAM - MD5, SIMPLE

CRAM_MD5 OPTIONAL, KERBEROS,

SSL CLIENT AUTH

103 67 512 200 EBCDIC 1, 2, 3,

4

Bind user

104 68 256 100 EBCDIC 1, 3 Certificate Label

105 69 256 100 EBCDIC 1, 3 Key Ring

144 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 40. EIM extended relocates (continued)

106 6A 256 100 EBCDIC 2, 4 Registry name - Source

107 6B 256 100 EBCDIC 2, 4 Registry user name - Source

108 6C 36 24 EBCDIC 2, 4 Identifier UUID (fixed length)

109 6D 256 100 EBCDIC 2, 4 Identifier unique name

110 6E 256 100 EBCDIC 2, 4 Identifier alias

111 6F 256 100 EBCDIC 2, 4 Registry name - Target

112 70 256 100 EBCDIC 2, 4 Registry user additional info

113 71 256 100 EBCDIC 2, 4 Registry user name – Target

114 72 -- -- -- -- Reserved

115 73 -- -- -- -- Reserved

116 74 -- -- -- -- Reserved

117 75 64 40 EBCDIC 3 Access type - EIM_ACCESS_ADMIN,

EIM_ACCESS_REG_ADMIN,

EIM_ACCESS_REGISTRY,

EIM_ACCESS_IDENTIFIER_ADMIN,

EIM_ACCESS_MAPPING_LOOKUP

118 76 256 100 EBCDIC 3 Access user

119 77 64 40 EBCDIC 2, 3, 4 Association or Policy Type -

EIM_ADMIN, EIM_ALL_ASSOC,

EIM_ALL_POLICY_ASSOC,

EIM_CERT_FILTER_POLICY,

EIM_DEFAULT_DOMAIN_POLICY,

EIM_DEFAULT_REG_POLICY,

EIM_SOURCE,

EIM_SOURCE_AND_TARGET,

EIM_TARGET

120 78 64 40 EBCDIC 3, 4 Change Type - EIM_ADD, EIM_CHG,

EIM_ENABLE, EIM_DISABLE,

EIM_RMV

121 79 -- -- -- -- Reserved

122 7A 256 100 EBCDIC 3 Domain Description

123 7B 256 100 EBCDIC 4 Identifier additional information

124 7C 256 100 EBCDIC 4 Identifier description

125 7D 256 100 EBCDIC 3, 4 Options (multi-valued) - EIM_FAIL,

EIM_GEN_UNIQUE,

EIM_REGISTRY_MAPPING_LOOKUP,

EIM_REGISTRY_POLICY_

ASSOCIATIONS

126 7E 64 40 EBCDIC 4 Policy Filter Type -

EIM_ALL_FILTERS,

EIM_CERTIFICATE_FILTER

127 7F 512 200 EBCDIC 2, 4 Policy Filter Value

128 80 64 40 EBCDIC 3 Registry alias type

129 81 256 100 EBCDIC 3 Registry alias value

130 82 256 100 EBCDIC 3 Registry description

131 83 256 100 EBCDIC 2, 3, 4 Registry name or Registry name -

ADMIN

Chapter 10. EIM Auditing 145

Table 40. EIM extended relocates (continued)

132 84 256 100 EBCDIC 3 Registry name – System

133 85 64 40 EBCDIC 3 OID for the Registry type

134 86 256 100 EBCDIC 3 Registry URI

135 87 256 100 EBCDIC 2, 4 Registry user description

136 88 256 100 EBCDIC 4 Registry user name

137 89 256 100 EBCDIC 4 Identifier alias attribute value

The XML output from the RACF SMF Unload Utility

The EIM XML elements generated by the RACF SMF Unload utility for an EIM

event are described by the XML schema document IRREIMSC which can be found

in SYS1.SAMPLIB.

The following is a copy of the EIM schema document.

<?xml version="1.0" encoding="ebcdic-cp-us" ?>

<xs:schema targetNamespace="http://www.ibm.com/xmlns/zOS/EIMSchema"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="http://www.ibm.com/xmlns/zOS/EIMSchema">

 <!-- -->

 <!-- -->

 <!-- PROPRIETARY STATEMENT -->

 <!-- -->

 <!-- -->

 <!-- LICENSED MATERIALS - PROPERTY OF IBM -->

 <!-- THIS MACRO IS "RESTRICTED MATERIALS OF IBM" -->

 <!-- 5637-A01 (C) COPYRIGHT IBM CORP. 2005 -->

 <!-- -->

 <!-- STATUS= HRF7720 -->

 <!-- -->

 <!-- END_OF_PROPRIETARY_STATEMENT -->

 <!-- -->

 <!-- -->

 <!-- -->

 <!--*01* EXTERNAL CLASSIFICATION: OTHER -->

 <!--*01* END OF EXTERNAL CLASSIFICATION: -->

 <!-- -->

 <!-- This SAMPLIB member is only an example. The value -->

 <!-- on each statement is not necessarily an IBM-recommended -->

 <!-- value. Installations may use this member to validate XML -->

 <!-- documents produced by the RACF SMF Data Unload Utility -->

 <!-- -->

 <!-- -->

 <!-- -->

 <!-- Name: HITSCHEM -->

 <!-- -->

 <!-- Description: Define the EIM XML grammar used by the XML -->

 <!-- instance documents produced by the RACF SMF Data -->

 <!-- Unload Utility (IRRADU00). -->

 <!-- -->

 <!-- Operation: This is an XML schema document that defines the -->

 <!-- XML tag language used by the RACF SMF Data -->

 <!-- Unload Utility(IRRADU00) XML instance documents -->

 <!-- containing EIM events. -->

 <!-- -->

 <!-- -->

 <!-- CHANGE ACTIVITY: -->

 <!-- $L0=EIMAD HRF7720 040211 PDMKL1 EIM Auditing @L0A-->

 <!-- $P1=EIMAD HRF7720 040525 PDMKL1 MG03949 @P1A-->

 <!-- $P2=EIMAD HRF7720 040608 PDMKL1 MG03969 @P2A-->

146 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

<!-- $P3=EIMAD HRF7720 040608 PDMKL1 MG04010 @P3A-->

 <!-- $P4=EIMAD HRF7720 040625 PDMKL1 MG04222 @P4A-->

 <!-- $P5=EIMAD HRF7720 040727 PDMKL1 MG04417 @P5A-->

 <!-- $P5=EIMAD HRF7720 040729 PDMKL1 MG04444 @P6A-->

 <!-- -->

 <!-- -->

 <!-- CHANGE DESCRIPTIONS: -->

 <!-- A000000-999999 @L0A-->

 <!-- C - Updated the enumerated values for t_accessType, @P1A-->

 <!-- t_assocPolicyType, t_changeType @P1A-->

 <!-- t_connectionType, t_policyFilterType, and @P1A-->

 <!-- t_options @P1A-->

 <!-- A - Added identAliasat element. @P2A-->

 <!-- D - Delete regLookups, domainPol, and regPol elements @P3A-->

 <!-- C - Shortened records so they fit into SYS1.SAMPLIB @P4A-->

 <!-- D - Deleted last line which contained an invalid char @P5A-->

 <!-- C - Updated t_connectionType, t_policyFilterTypes, @P6A-->

 <!-- identUuid, regAliastype elements. @P6A-->

 <!-- -->

 <!-- -->

 <!-- -->

 <!-- EIM base types -->

 <!-- -->

 <xs:simpleType name="t_connectionType">

 <xs:restriction base="xs:token">

 <xs:enumeration value="SIMPLE"/>

 <xs:enumeration value="SIMPLE AND CRAM_MD5"/>

 <xs:enumeration value="PROTECT CRAM_MD5 OPTIONAL"/>

 <xs:enumeration value="KERBEROS"/>

 <xs:enumeration value="SSL CLIENT AUTH"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="t_accessType">

 <xs:restriction base="xs:token">

 <xs:enumeration value="EIM_ACCESS_ADMIN"/>

 <xs:enumeration value="EIM_ACCESS_REG_ADMIN"/>

 <xs:enumeration value="EIM_ACCESS_REGISTRY"/>

 <xs:enumeration value="EIM_ACCESS_IDENTIFIER_ADMIN"/>

 <xs:enumeration value="EIM_ACCESS_MAPPING_LOOKUP"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="t_assocPolicyType">

 <xs:restriction base="xs:token">

 <xs:enumeration value="EIM_ADMIN"/>

 <xs:enumeration value="EIM_ALL_ASSOC"/>

 <xs:enumeration value="EIM_ALL_POLICY_ASSOC"/>

 <xs:enumeration value="EIM_CERT_FILTER_POLICY"/>

 <xs:enumeration value="EIM_DEFAULT_DOMAIN_POLICY"/>

 <xs:enumeration value="EIM_DEFAULT_REG_POLICY"/>

 <xs:enumeration value="EIM_SOURCE"/>

 <xs:enumeration value="EIM_SOURCE_AND_TARGET"/>

 <xs:enumeration value="EIM_TARGET"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="t_changeType">

 <xs:restriction base="xs:token">

 <xs:enumeration value="EIM_ADD"/>

 <xs:enumeration value="EIM_CHG"/>

 <xs:enumeration value="EIM_DISABLE"/>

 <xs:enumeration value="EIM_ENABLE"/>

 <xs:enumeration value="EIM_RMV"/>

 </xs:restriction>

Chapter 10. EIM Auditing 147

</xs:simpleType>

 <xs:simpleType name="t_options">

 <xs:restriction base="xs:token">

 <xs:enumeration value="EIM_FAIL"/>

 <xs:enumeration value="EIM_GEN_UNIQUE"/>

 <xs:enumeration value="EIM_REGISTRY_MAPPING_LOOKUP"/>

 <xs:enumeration value="EIM_REGISTRY_POLICY_ASSOCIATIONS"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="t_policyFilterType">

 <xs:restriction base="xs:token">

 <xs:enumeration value="EIM_CERTIFICATE_FILTER"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="t_string">

 <xs:restriction base="xs:string">

 <xs:minLength value="1"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="t_string36">

 <xs:restriction base="xs:string">

 <xs:length value="36"/>

 </xs:restriction>

 </xs:simpleType>

 <!-- -->

 <!-- EIM specific elements. -->

 <!-- -->

 <xs:element name="accessType" type="t_accessType" />

 <xs:element name="accessUser" type="t_string" />

 <xs:element name="api" type="t_string" />

 <xs:element name="assocpolType" type="t_assocPolicyType" />

 <xs:element name="bindUser" type="t_string" />

 <xs:element name="certLabel" type="t_string" />

 <xs:element name="changeType" type="t_changeType" />

 <xs:element name="connectType" type="t_connectionType" />

 <xs:element name="domainDesc" type="t_string" />

 <xs:element name="domainUrl" type="t_string" />

 <xs:element name="identAlias" type="t_string" />

 <xs:element name="identAliasat" type="t_string" />

 <xs:element name="identDesc" type="t_string" />

 <xs:element name="identInfo" type="t_string" />

 <xs:element name="identUnique" type="t_string" />

 <xs:element name="identUuid" type="t_string36" />

 <xs:element name="keyRing" type="t_string" />

 <xs:element name="options" type="t_options" />

 <xs:element name="polFilt" type="t_string" />

 <xs:element name="polFiltType" type="t_policyFilterType" />

 <xs:element name="regAlias" type="t_string" />

 <xs:element name="regAliastype" type="t_string" />

 <xs:element name="regDesc" type="t_string" />

 <xs:element name="regName" type="t_string" />

 <xs:element name="regSrc" type="t_string" />

 <xs:element name="regSystem" type="t_string" />

 <xs:element name="regTgt" type="t_string" />

 <xs:element name="regType" type="t_string" />

 <xs:element name="regUri" type="t_string" />

 <xs:element name="regUserDesc" type="t_string" />

 <xs:element name="regUserInfo" type="t_string" />

 <xs:element name="regUserName" type="t_string" />

148 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

<xs:element name="regUserSrc" type="t_string" />

 <xs:element name="regUserTgt" type="t_string" />

</xs:schema>

The tabular output from the RACF SMF Unload utility

A general description of the format of the tabular records created by the RACF SMF

Unload Utility can be found in z/OS Security Server RACF Macros and Interfaces,

in the chapter ″The format of the unloaded SMF type 83 data″.

For EIM events, SMF Unload reserves two spaces between fields that appear after

the header information. When the length of a value in the SMF type 83 subtype 2

record exceeds the available field length in the tabular output, SMF Unload will

insert a ″+″ in the character position following indicating more data is available. This

additional data can be viewed by reading the logged SMF record or by creating an

XML document from the logged SMF record.

The following table describes the format of the header portion of the record. RACF

constructs the header portion of the record from the SMF record. Because each of

the SMF record types that SMF Unload processes contain different data, some

fields of the header portion of the unloaded SMF record contain blanks. When

working with the sample DB2 statements for loading the data into DB2, the <col_id>

string is replaced by the column identifier for each field created. For EIM fields, the

<col_id> may have the values:

 Table 41. <col_id> values

<col_id> Description

EIMC EIM connection events

EIML EIM lookup events

EIMD EIM administrative events involving changes to EIM

domains, registries, and user access to data in an EIM

domain

EIMI EIM administrative events involving changes to identifiers,

associations, and policies

 Table 42. Common information in the SMF Type 83 Subtype 2 records

Field Name Type Length Start End Comments

<col_id>_EVENT_TYPE char 8 1 8 The type of the event.

Set to *CONNECT,

*LOOKUP, *ADMIN, or

*ADMIN2

<col_id>__EVENT_QUAL char 8 10 17 The type of a

qualification of the

type of event that is

being described. Valid

values are shown in

the tables that

accompany each of

the record extension

descriptions.

<col_id>__TIME_WRITTEN Time 8 19 26 Time that the record

was written to SMF.

<col_id>_DATE_WRITTEN Date 10 28 37 Date that the record

was written to SMF.

Chapter 10. EIM Auditing 149

Table 42. Common information in the SMF Type 83 Subtype 2 records (continued)

Field Name Type Length Start End Comments

<col_id>_SYSTEM_SMFID Char 4 39 42 SMF system ID of the

system from which the

record originates.

<col_id>_RESERVED_01 Char 16 44 59 Reserved.

<col_id>_VIOLATION Yes/No 4 61 64 Does this record

represent a violation?

<col_id>_USER_NDFND Yes/No 4 66 69 Was this user not

defined to RACF?

<col_id>_USER_WARNING Yes/No 4 71 74 Was this record

created because of a

WARNING?

<col_id>_EVT_USER_ID Char 8 76 83 User ID associated

with the event.

<col_id>_EVT_GRP_ID Char 8 85 92 Group name

associated with the

event.

<col_id>_AUTH_NORMAL Yes/No 4 94 97 Was normal authority

checking a reason for

access being allowed?

<col_id>_AUTH_SPECIAL Yes/No 4 99 102 Was special authority

checking a reason for

access being allowed?

<col_id>_AUTH_OPER Yes/No 4 104 107 Was operations

checking a reason for

access being allowed?

<col_id>_AUTH_AUDIT Yes/No 4 109 112 Was auditor authority

checking a reason for

access being allowed?

<col_id>_AUTH_EXIT Yes/No 4 114 117 Was exit checking a

reason for access

being allowed?

<col_id>_AUTH_FAILSFT Yes/No 4 119 122 Was failsoft checking

a reason for access

being allowed?

<col_id>_AUTH_BYPASS Yes/No 4 124 127 Was the use of the

user ID *BYPASS* a

reason for access

being allowed?

<col_id>_AUTH_TRUSTED Yes/No 4 129 132 Was trusted authority

checking a reason for

access being allowed?

<col_id>_LOG_CLASS Yes/No 4 134 137 Was SETR

AUDIT(class) checking

a reason for this event

to be recorded?

<col_id>_LOG_USER Yes/No 4 139 142 Was auditing

requested for this

user?

150 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 42. Common information in the SMF Type 83 Subtype 2 records (continued)

Field Name Type Length Start End Comments

<col_id>_LOG_SPECIAL Yes/No 4 144 147 Was auditing

requested for access

granted due to the

SPECIAL privilege?

<col_id>_LOG_ACCESS Yes/No 4 149 152 Did the profile indicate

audit, or did

FAILSOFT processing

allow access, or did

the RACHECK exit

indicate auditing?

<col_id>_LOG_RACINIT Yes/No 4 154 157 Did the RACINIT fail?

<col_id>_LOG_ALWAYS Yes/No 4 159 162 Is this command

always audited?

<col_id>_LOG_CMDVIOL Yes/No 4 164 167 Was this event audited

due to CMDVIOL?

<col_id>_LOG_GLOBAL Yes/No 4 169 172 Was this event audited

due to

GLOBALAUDIT?

<col_id>_TERM_LEVEL Integer 3 174 176 The terminal level

associated with this

audit record.

<col_id>_BACKOUT_FAIL Yes/No 4 178 181 Did RACF fail in

backing out the data?

<col_id>_PROF_SAME Yes/No 4 183 186 Was the profile the

same at the end of

this event?

<col_id>_TERM Char 8 188 195 The terminal

associated with the

event.

<col_id>_JOB_NAME Char 8 197 204 The job name

associated with the

event.

<col_id>_READ_TIME Time 8 206 213 The time that the job

entered the system.

<col_id>_READ_DATE Date 10 215 224 The date that the job

entered the system.

<col_id>_SMF_USER_ID Char 8 226 233 User ID from SMF

common area. This

value is managed by

SMF processing exits.

<col_id>_LOG_LEVEL Yes/No 4 235 238 Was this event audited

due to SECLEVEL

auditing?

<col_id>_LOG_LOGOPT Yes/No 4 240 243 Was this event audited

due to SETR

LOGOPTIONS

auditing?

Chapter 10. EIM Auditing 151

Table 42. Common information in the SMF Type 83 Subtype 2 records (continued)

Field Name Type Length Start End Comments

<col_id>_LOG_SECL Yes/No 4 245 248 Was this event audited

due to SETR

SECLABELAUDIT

auditing?

<col_id>_LOG_COMPATM Yes/No 4 250 253 Was this event audited

due to SETR

COMPATMODE

auditing?

<col_id>_LOG_APPLAUD Yes/No 4 255 258 Was this event audited

due to SETR

APPLAUDIT?

<col_id>_USR_SECL Char 8 260 267 The SECLABEL

associated with this

user.

<col_id>_LOG_VMEVENT Yes/No 4 269 272 Was this event audited

due to VMEVENT

auditing?

<col_id>_LOG_NONOMVS Yes/No 4 274 277 Did this user try to use

z/OS UNIX without

being defined as a

z/OS UNIX user (that

is, is the user’s OMVS

segment in the RACF

database missing)?

<col_id>_LOG_OMVSNPRV Yes/No 4 279 282 The service that was

requested requires

that the user be the

z/OS UNIX superuser.

<col_id>_AUTH_OMVSSU Yes/No 4 284 287 Was the z/OS UNIX

superuser authority

used to grant the

request?

<col_id>_AUTH_OMVSSYS Yes/No 4 289 292 Was the request

granted because the

requester was z/OS

UNIX itself?

<col_id>_RACF_VERSION Char 4 294 297 The version of RACF

on the system which

audited the event

<col_id>_SRVR_USER_ID Char 8 299 306 Identifier of the

address space user

associated with this

event (jobname is

used if the user is not

defined to RACF)

<col_id>_SRVR_GRP_ID Char 8 308 315 Group to which the

address space user

was connected

(stepname is used if

the user is not defined

to RACF)

152 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 42. Common information in the SMF Type 83 Subtype 2 records (continued)

Field Name Type Length Start End Comments

<col_id>_PROD_ID Char 8 317 324 Short name for the

product logging the

event.

<col_id>_LOG_RAUDITX Yes/No 4 326 329 Did the caller of

R_auditx require

logging of this event?

<col_id>_X500_SUBJECT Char 255 331 585 Subject’s name

associated with this

event.

<col_id>_X500_ISSUER Char 255 588 842 Issuer’s name

associated with this

event

<col_id>_RES_NAME Char 246 845 1090 Resource name

<col_id>_CLASS Char 8 1093 1100 Class name

<col_id>_NAME Char 246 1103 1348 Profile name

<col_id>_PROD_FMID Char 7 1351 1357 The version of the

product or component

which detected the

event

<col_id>_PROD_NAME Char 255 1360 1614 The name of the

product or component

which detected the

event

<col_id>_LOGSTR Char 255 1617 1871 Log string

<col_id>_EVENT_LINK Char 16 1874 1889 Value used to link

several SMF records

to the same event.

<col_id>_RESERVED_02 Char 1105 1892 2997 Reserved.

The data following the header in the tabular record varies according to the EIM

event that was recorded. There are four EIM event types:

 Event Code from SMF type 83 subtype 2 records Tabular output Event Type strings

1 *CONNECT

2 *LOOKUP

3 *ADMIN1

4 *ADMIN2

The following tables describe the data that may appear in the tabular record for

each of the EIM event types and the event qualifiers for each event type.

 Table 43. Event-specific fields for EIM connection events (EIMC_EVENT_TYPE is ″*CONNECT″)

Field Name Type Length

Position

Comments Start End

EIMC_API Char 128 3000 3127 EIM API Name

EIMC_DOMAIN_URL Char 128 3130 3257 Domain URL

Chapter 10. EIM Auditing 153

Table 43. Event-specific fields for EIM connection events (EIMC_EVENT_TYPE is ″*CONNECT″) (continued)

Field Name Type Length

Position

Comments Start End

EIMC_CONNECT_TYPE Char 32 3260 3291 Connection type -

SIMPLE, SIMPLE AND

CRAM-MD5, SIMPLE

CRAM_MD5

OPTIONAL,

KERBEROS, SSL

CLIENT AUTH

EIMC_BIND_USER Char 512 3294 3805 Bind user

EIMC_CERT_LABEL Char 128 3808 3935 Certificate Label

EIMC_KEY_RING Char 128 3938 4065 Key Ring

The event qualifiers (EIMC_EVENT_QUAL) for EIM connection events indicate

whether or not the attempt to connect to an EIM domain succeeded or failed due to

security events (for example a bad password was specified). The possible values

are:

 Event qualifier

(EIMC_EVENT_QUAL field in the

tabular record)

Event qualifier value in the SMF

Type 83 subtype 2 record Event description

SUCCESS 00 Successful connect to the domain

controller or a disconnection from the

domain controller

BINDFAIL 03 Unauthorized to connect to the

domain controller

 Table 44. Event-specific fields for EIM lookup events (EIML_EVENT_TYPE is ″*LOOKUP″)

Field Name Type Length

Position

Comments Start End

EIML_API Char 128 3000 3127 EIM API Name

EIML_DOMAIN_URL Char 128 3130 3257 Domain URL

EIML_CONNECT_TYPE Char 32 3260 3291 Connection type - SIMPLE, SIMPLE

AND CRAM-MD5, SIMPLE CRAM_MD5

OPTIONAL, KERBEROS, SSL CLIENT

AUTH

EIML_BIND_USER Char 512 3294 3805 Bind user

EIML_REG_SRC Char 64 3808 3871 Registry name - source

EIML_REG_USER_SRC Char 64 3874 3937 Registry user name - source

EIML_IDENT_UUID Char 36 3940 3975 Identifier UUID (fixed length)

EIML_IDENT_UNIQUE Char 256 3978 4233 Identifier unique name

EIML_IDENT_ALIAS Char 512 4236 4747 Identifier alias

EIML_REG_TGT Char 64 4750 4813 Registry name - Target

EIML_REG_USER_INFO Char 128 4816 4943 Registry user additional info

EIML_REG_USER_TGT Char 64 4946 5009 Registry user name - Target

154 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 44. Event-specific fields for EIM lookup events (EIML_EVENT_TYPE is ″*LOOKUP″) (continued)

Field Name Type Length

Position

Comments Start End

EIML_ASSOCPOL_TYPE Char 32 5012 5043 Association or Policy Type -

EIM_ADMIN, EIM_ALL_ASSOC,

EIM_ALL_POLICY_ASSOC,

EIM_CERT_FILTER_POLICY,

EIM_DEFAULT_DOMAIN_POLICY,

EIM_DEFAULT_REG_POLICY,

EIM_SOURCE,

EIM_SOURCE_AND_TARGET,

EIM_TARGET

EIML_POL_FILT Char 512 5046 5557 Policy Filter Value

EIML_REG_NAME Char 64 5560 5623 Registry name or Registry name -

ADMIN

EIML_REG_USER_NAME Char 64 5626 5689 Registry user name

The event qualifiers (EIML_EVENT_QUAL) for EIM lookup events indicate whether

or not the attempt to retrieve a user ID mapping was found, not found, or failed due

to security reasons (the bind distinguished name does not have authority to retrieve

the user ID mapping). The possible EIM lookup qualifier values are:

 Event qualifier

(EIML_EVENT_QUAL field in the

tabular record)

Event qualifier value in the SMF

Type 83 subtype 2 record Event description

SUCCESS 00 Successful request

INSAUTH 01 Insufficient authority to retrieve EIM

data

NOTFOUND 02 Mapping not found, the user was not

authorized to access the EIM data, or

policies or lookups were not enabled

 Table 45. Event-specific fields for EIM administrative events requiring changes to an EIM domain, registry, or user

access (EIMD_EVENT_TYPE is ″*ADMIN1″)

Field Name Type Length

Position

Comments Start End

EIMD_API Char 128 3000 3127 EIM API Name

EIMD_DOMAIN_URL Char 128 3130 3257 Domain URL

EIMD_CONNECT_TYPE Char 32 3260 3291 Connection type - SIMPLE, SIMPLE AND

CRAM-MD5, SIMPLE CRAM_MD5 OPTIONAL,

KERBEROS, SSL CLIENT AUTH

EIMD_BIND_USER Char 512 3294 3805 Bind user

EIMD_CERT_LABEL Char 128 3808 3935 Certificate

EIMD_KEY_RING Char 128 3938 4065 Key Ring

EIMD_ACCESS_TYPE Char 32 4068 4099 Access type - EIM_ACCESS_ADMIN,

EIM_ACCESS_REG_ADMIN,

EIM_ACCESS_REGISTRY,

EIM_ACCESS_IDENTIFIER_ADMIN,

EIM_ACCESS_MAPPING_LOOKUP

EIMD_ACCESS_USER Char 128 4102 4229 Access user

Chapter 10. EIM Auditing 155

Table 45. Event-specific fields for EIM administrative events requiring changes to an EIM domain, registry, or user

access (EIMD_EVENT_TYPE is ″*ADMIN1″) (continued)

Field Name Type Length

Position

Comments Start End

EIMD_ASSOCPOL_TYPE Char 32 4232 4263 Association or Policy Type - EIM_ADMIN,

EIM_ALL_ASSOC, EIM_ALL_POLICY_ASSOC,

EIM_CERT_FILTER_POLICY,

EIM_DEFAULT_DOMAIN_POLICY,

EIM_DEFAULT_REG_POLICY, EIM_SOURCE,

EIM_SOURCE_AND_TARGET, EIM_TARGET

EIMD_CHANGE_TYPE Char 32 4266 4297 Change Type - EIM_ADD, EIM_CHG,

EIM_ENABLE, EIM_DISABLE, EIM_RMV

EIMD_RESERVED_03 Char 32 4300 4331 Reserved

EIMD_DOMAIN_DESC Char 64 4334 4397 Domain Description

EIMD_OPTIONS Char 128 4400 4527 Options (multi-valued) - EIM_FAIL,

EIM_GEN_UNIQUE,

EIM_REGISTRY_MAPPING_LOOKUP,

EIM_REGISTRY_POLICY_ASSOCIATIONS

EIMD_REG_ALIASTYPE Char 32 4530 4561 Registry alias type - RACF, OS400,

KERBEROS, AIX, NDS, LDAP, PD, WIN2K,

others

EIMD_REG_ALIAS Char 128 4564 4691 Registry alias value

EIMD_REG_DESC Char 64 4694 4757 Registry description

EIMD_REG_NAME Char 64 4760 4823 Registry name or Registry name - ADMIN

EIMD_RESERVED_04 Char 62 4826 4887 Reserved

EIMD_REG_SYSTEM Char 64 4890 4953 Registry name - System

EIMD_REG_TYPE Char 32 4956 4987 OID for the Registry type - RACF, OS400,

KERBEROS-EX, KERBEROS-IG, AIX, NDS,

LDAP, POLICY DIRECTOR, WIN2K,

oid-CASEIGNORE, oid-CASEEXACT, others.

See definitions in eim.h

EIMD_REG_URI Char 128 4990 5117 Registry URI

The event qualifiers (EIMD_EVENT_QUAL) for EIM administrative events involving

an EIM domain, registry, or user access indicate whether or not the change was

successful or failed for security reasons (the bind distinguished name does not have

authority to connect to the EIM domain or to change the EIM domain, registry, or

user access as requested). The possible event qualifier values for these

administrative events are:

 Event qualifier

(EIMD_EVENT_QUAL field in the

tabular record)

Event qualifier value in the SMF

Type 83 subtype 2 record

Event description

SUCCESS 00 Successful request

INSAUTH 01 Insufficient authority to modify the

EIM domain or retrieve information

from the domain

BINDFAIL 03 Unauthorized to connect to the

domain controller

156 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 46. Event-specific fields for EIM administrative events involving changes to the identifiers, associations, and

policies in an EIM domain (EIMI_EVENT_TYPE is ″*ADMIN2″)

Field Name Type Length

Position

Comments Start End

EIMI_API Char 128 3000 3127 EIM API Name

EIMI_DOMAIN_URL Char 128 3130 3257 Domain URL

EIMI_CONNECT_TYPE Char 32 3260 3291 Connection type - SIMPLE, SIMPLE AND

CRAM-MD5, SIMPLE CRAM_MD5

OPTIONAL, KERBEROS, SSL CLIENT AUTH

EIMI_BIND_USER Char 512 3294 3805 Bind user

EIMI_REG_SRC Char 64 3808 3871 Registry name - source

EIMI_REG_USER_SRC Char 64 3874 3937 Registry user name - source

EIMI_IDENT_UUID Char 36 3940 3975 Identifier UUID (fixed length)

EIMI_IDENT_UNIQUE Char 256 3978 4233 Identifier unique name

EIMI_IDENT_ALIAS Char 512 4236 4747 Identifier alias

EIMI_REG_TGT Char 64 4750 4813 Registry name - Target

EIMI_REG_USER_INFO Char 128 4816 4943 Registry user additional info

EIMI_REG_USER_TGT Char 64 4946 5009 Registry user name - Target

EIMI_IDENT_ALIASAT Char 256 5012 5267 Identifier alias attribute value

EIMI_RESERVED_03 Char 290 5270 5559 Reserved

EIMI_ASSOCPOL_TYPE Char 32 5562 5593 Association or Policy Type - EIM_ADMIN,

EIM_ALL_ASSOC,

EIM_ALL_POLICY_ASSOC,

EIM_CERT_FILTER_POLICY,

EIM_DEFAULT_DOMAIN_POLICY,

EIM_DEFAULT_REG_POLICY, EIM_SOURCE,

EIM_SOURCE_AND_TARGET, EIM_TARGET

EIMI_CHANGE_TYPE Char 32 5596 5627 Change Type - EIM_ADD, EIM_CHG,

EIM_ENABLE, EIM_DISABLE, EIM_RMV

EIMI_IDENT_INFO Char 128 5630 5757 Identifier additional information

EIMI_IDENT_DESC Char 64 5760 5823 Identifier description

EIMI_OPTIONS Char 128 5826 5953 Options (multi-valued) - EIM_FAIL,

EIM_GEN_UNIQUE,

EIM_REGISTRY_MAPPING_LOOKUP,

EIM_REGISTRY_POLICY_ASSOCIATIONS

EIMI_POL_FILT_TYPE Char 32 5956 5987 Policy Filter Type - EIM_ALL_FILTERS,

EIM_CERTIFICATE_FILTER

EIMI_POL_FILT Char 512 5990 6501 Policy Filter Value

EIMI_REG_NAME Char 64 6504 6567 Registry name or Registry name - ADMIN

EIMI_RESERVED_04 Char 62 6570 6631 Reserved

EIMI_REG_USER_DESC Char 64 6634 6697 Registry user description

EIMI_REG_USER_NAME Char 64 6700 6763 Registry user name

The event qualifiers (EIMI_EVENT_QUAL) for EIM administrative events involving

identifiers, associations, and policies indicate whether or not the change was

Chapter 10. EIM Auditing 157

successful or failed for security reasons (the bind distinguished name does not have

the authority to make the requested change). The possible event qualifier values for

these administrative events are:

 Event qualifier (EIMI_EVENT_QUAL

field in the tabular record)

Event qualifier value in the SMF

Type 83 subtype 2 record

Event description

SUCCESS 00 Successful request

INSAUTH 01 Insufficient authority to modify the

EIM domain or retrieve information

from the domain

Included in z/OS are sample DB2 statements that can be used to load the EIM

tabular output into DB2 for further analysis.

The sample DB2 statements for defining the table space and tables used to contain

the EIM data is in SYS1.SAMPLIB(ITYSDBTB).

The sample DB2 load utility statements are in SYS1.SAMPLIB(ITYSDBLD). They

can be used to load the EIM tabular output records of SMF unload into tables

created by ITYSDBTB.

158 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Chapter 11. EIM APIs

Programming Interface information

The EIM APIs are a programming Interface. They are intended for customers to use

in customer-written programs.

End of Programming Interface information

This chapter provides information about EIM APIs, which are in alphabetical order.

Before the APIs themselves, preliminary sections identify the authority to use the

APIs and describe the EIM return code parameter, EimRC.

This chapter discusses C/C++ as well as Java APIs.

Authority to use APIs

To use most of the APIs, you must meet one of the following:

v Be an LDAP administrator

v Belong to an EIM-defined LDAP access control group

Different access groups can update or view different portions of the EIM domain

and, therefore, have the authority to use different APIs.

Some APIs require additional authority granted through RACF profiles.

For information on access authorities, refer to “EIM access control” on page 30. The

following APIs do not require the user to have an EIM authority:

v eimSetConfiguration

v eimRetrieveConfiguration

v eimCreateHandle

v eimDestroyHandle

v eimSetAttribute

v eimGetAttribute

v eimConnect

v eimConnectToMaster

Java APIs

Java APIs make EIM available to z/OS applications and servers written in Java. If

your location uses programs written in Java and you wish to incorporate these EIM

into these programs, you’ll be able to use the Java EIM APIs to interface with EIM.

Some benefits of this include:

v The ability to write EIM administrative and lookup applications in Java

v z/OS qualities of service in the Java-enabled APIs, specifically:

1. Auditors can begin to track work requests as they are processed by their

Eserver systems. Activity by the user IDs on different platforms may be

traced back to the enterprise identifier

2. Applications can use RACF profiles to store bind credentials (bind DNs and

passwords) instead of less secure practices such as hard coding the values

in their programs, defining side files to store the information, or creating yet

another application unique mechanism for managing bind credentials

© Copyright IBM Corp. 2002, 2008 159

3. Applications can use RACF profiles to store the registry names instead of

hard coding them in the programs, or store them in configuration files with

application unique tools for managing the information. RACF allows the

stored registry names to be shared among all applications on the system.

v Support Kerberos and CRAM-MD5 authentication mechanisms through the JNI

provider

v Use existing system identities and the new distributed technologies

interchangeably

v Administrators will have a central repository for saving relationships between

enterprise identifiers and user IDs. As EIM based administration applications

become available and operating systems exploit EIM, creation and deletion of

user IDs can be tied to identifiers in an EIM domain

v The combination of EIM and LDAP eliminates the need for creating new user

identities and the software to manage them. EIM and LDAP can replace the need

for costly infrastructure to distribute identities to different platforms

v The ability to transform identities to local representations across operating

systems and use existing system authorization mechanisms to validate access to

system resources.

Authorization to use EIM Services

Authorization details are included in the documentation for the Java APIs, including

those methods that have special authorization requirements. This documentation is

separate from the z/OS library. For more details see “Obtaining documentation for

the Java APIs” on page 163.

Mapping C++ to Java APIs

The following table shows the Java equivalent to the EIM C/C++ API. Several calls

to java methods may be required to obtain the same information as a single C/C++

API. In addition, some of the Java methods are used in several places. Use the

table to help guide you with answers to any questions you may have about RACF

authorization requirements or what information will be audited for the Java APIs.

 Table 47. C++ to Java API mapping

C/C++ API

EIM Java Interface Classes

Class Method(s)

eimAddAccess com.ibm.eim.AccessContext addAdminAccessUser,

addRegistryAccessUser

eimAddApplicationRegistry com.ibm.eim.Domain addApplicationRegistry

eimAddAssociation com.ibm.eim.Eid addAssociation

eimAddIdentifier com.ibm.eim.Domain addEid, addUniqueEid

eimAddPolicyAssociation com.ibm.eim.Domain addCertificateFilterPolicyAssociation,

addDefaultDomainPolicyAssociation,

addDefaultRegistryPolicyAssociation

eimAddPolicyFilter com.ibm.eim.Registry addCertificateFilter

eimAddSystemRegistry com.ibm.eim.Domain addSystemRegistry

eimChangeDomain com.ibm.eim.Domain setDescription

eimChangeIdentifier com.ibm.eim.Eid addAdditionalInfo, addAlias,

removeAdditionalInfo, removeAlias,

setDescription

Java APIs

160 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 47. C++ to Java API mapping (continued)

C/C++ API

EIM Java Interface Classes

Class Method(s)

eimChangeRegistry com.ibm.eim.Registry setDescription

com.ibm.eim.SystemRegistry setUri

eimChangeRegistryAlias com.ibm.eim.Registry addAlias, removeAlias

eimChangeRegistryUser com.ibm.eim.RegistryUser addAdditionalInfo, removeAdditionalInfo,

setDescription

eimConnect com.ibm.eim.DomainManager getDomain

eimConnectToMaster n/a

eimCreateDomain com.ibm.eim.DomainManager createDomain

eimCreateHandle n/a

eimDeleteDomain com.ibm.eim.Domain delete

eimDestroyHandle com.ibm.eim.Domain disconnect

eimErr2String com.ibm.eim.jni.EimException

eimFormatPolicyFilter com.ibm.eim.Formatter formatCertificateFilter

eimFormatUserIdentity com.ibm.eim.Formatter formatRegistryUserName

eimGetAssociatedIdentifi ers com.ibm.eim.Eid getAssociations

com.ibm.eim.RegistryUser getAssociatedEids

eimGetAttribute com.ibm.eim.Domain getDn, getHost, getName, getPort, getURL,

isSSL

eimGetRegistryNameFrom Alias com.ibm.eim.Domain getRegistriesByAlias, getRegistryNames

eimGetTargetFromIdentifier com.ibm.eim.Eid findTarget

eimGetTargetFromSource com.ibm.eim.Domain findTargetFromSource

eimGetVersion n/a

eimListAccess com.ibm.eim.AccessContext getAdminAccessUsers,

getRegistryAccessUsers

eimListAssociations com.ibm.eim.Association getAssociationType, getEid, getRegistry,

getRegistryName, getUid (a registry user

identity)

com.ibm.eim.Eid getAssociations

eimListDomains com.ibm.eim.Domain getDescription

com.ibm.eim.DomainManager getDomains

eimListIdentifiers com.ibm.eim.Domain getEids, getEidsByAlias, getEidsByName,

getEidsByUuid

com.ibm.eim.Eid getAdditionalInfo, getAliases, getDescription,

getName, getUuid

eimListPolicyFilters com.ibm.eim.Association getPolicyFilter, getSourceRegistry,

getSourceRegistryName

com.ibm.eim.PolicyFilter getFilterValue getPolicyFilterType,

getSourceRegistry, getSourceRegistryName

Java APIs

Chapter 11. EIM APIs 161

Table 47. C++ to Java API mapping (continued)

C/C++ API

EIM Java Interface Classes

Class Method(s)

eimListRegistries com.ibm.eim.Domain getRegistries

com.ibm.eim.ApplicationRegistry getSystemRegistryName

com.ibm.eim.Registry getDescription, getKind, getName, getType,

getUUID

com.ibm.eim.SystemRegistry getUri

eimListRegistryAliases com.ibm.eim.Domain getRegistryNames

com.ibm.eim.Registry getAliases

eimListRegistry Associations com.ibm.eim.Domain getRegistryAssociations

eimListRegistryUsers com.ibm.eim.Registry getUsers

com.ibm.eim.RegistryUser getAdditionalInfo, getDescription

eimListUserAccess com.ibm.eim.AccessContext getUserAccess

eimQueryAccess com.ibm.eim.AccessContext getUserAccess, queryAdminUserAccess,

queryRegistryUserAccess

com.ibm.eim.UserAccess hasAdmin, hasEidAdmin,

hasMappingLookup, hasRegistryAdmin

eimRemoveAccess com.ibm.eim.AccessContext deleteAdminAccessUser,

deleteRegistryAccessUser

eimRemoveAssociation com.ibm.eim.Eid removeAssociation

eimRemoveIdentifier com.ibm.eim.Eid delete

eimRemovePolicy Association com.ibm.eim.Domain removeCertificateFilterPolicyAssociation,

removeDefaultDomainPolicyAssociation,

removeDefaultRegistryPolicyAssociation

eimRemovePolicyFilter com.ibm.eim.Registry removeCertificateFilter

eimRemoveRegistry com.ibm.eim.Registry delete

eimRetrieveConfiguration com.ibm.eim.jni.EimConfiguration

Mgr

retrieveConfiguration (not supported on

z/OS), retrieveConfiguration_z

eimSetConfiguration (not

supported on z/OS)

com.ibm.eim.jni.EimConfiguration

Mgr

setConfiguration (not supported on z/OS)

eimSetConfigurationExt com.ibm.eim.jni.EimConfiguration

Mgr

setConfiguration_z, removeConfiguration_z

Java APIs

162 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 47. C++ to Java API mapping (continued)

C/C++ API

EIM Java Interface Classes

Class Method(s)

Other public methods com.ibm.eim.Domain getAccessContext,

getPolicyAssociationStatus, isConnected,

setPolicyAssociationStatus

com.ibm.eim.ConnectInfo ConnectInfo, getEnvironment, getSSLInfo,

isSSL, setSSL

com.ibm.eim.jni.EimConfig getKerberosRegistry, getLdapURL,

getLocalRegistry, getProfileBindDn,

getProfileBindPw, getProfileClassName,

getProfileName, getX509Registry, isEnabled

com.ibm.eim.DomainManager getInstance

com.ibm.eim.Formatter getInstance

com.ibm.eim.jni.EimException EimException, getMessage,

getRootException, getReasonCode,

getSubstitutions, setRootException,

setReasonCode, setSubstitutions, toString

com.ibm.eim.Registry getMappingLookupStatus,

getPolicyAssociationStatus, getPolicyFilters,

setMappingLookupStatus,

setPolicyAssociationStatus

com.ibm.eim.RegistryAlias equals, getName, getType, hashCode

com.ibm.eim.RegistryUser getRegistryName, getTargetUserName

com.ibm.eim.SSLInfo SSLInfo, getCertificateLabel, getTrustStore,

getTrustStorePw, getKeyStore,

getKeyStorePw

com.ibm.eim.UserAccess getDN, getRegistries

Obtaining documentation for the Java APIs

The classes and methods for the EIM Java APIs are described in html files known

as Javadoc. The Javadoc is the primary source of documentation for the application

programmer using the EIM Java APIs.

Javadoc is generated as html using the Javadoc tool. Since a browser is needed to

view the Javadoc, the Javadoc must either be downloaded to the user’s workstation

or viewed directly from an IBM public web site.

The Javadoc for the EIM Java APIs is available in eimzOS_DOC.jar. Javadoc is in

html format and in ASCII encoding. The jar file can be downloaded to the

workstation using ftp or other file transfer tool and then unjared for viewing locally.

To access the Javadoc files, do the following:

1. Extract the files from the eimzOS_DOC.jar using the jar utility

2. Open the file overview-summary.html using your browser. This file gives an

overview of the APIs and contains hyperlinks to descriptions of the interfaces,

classes, and methods.

3. Follow the HELP hyperlink or open the file help-doc.html to a general

description of how Javadoc is organized.

Java APIs

Chapter 11. EIM APIs 163

EimRC -- EIM return code parameter for C/C++

All EIM APIs return an errno. If the EimRC parameter is not NULL, this EIM return

code structure contains additional information about the error that was returned. You

can use this to get a text description of the error.

The layout for EimRC follows:

typedef struct EimRC {

 unsigned int memoryProvidedByCaller; /* Input: Size of the entire RC

 structure. This is filled in by

 the caller. This is used to tell

 the API how much space was provided

 for substitution text */

 unsigned int memoryRequiredToReturnData; /* Output: Filled in by API

 to tell caller how much data could

 have been returned. Caller can then

 determine if the caller provided

 enough space (i.e. if the entire

 substitution string was able to be

 copied to this structure). */

 int returnCode; /* Same as the errno returned as the

 rc for the API */

 int messageCatalogSetNbr; /* Message catalog set number */

 int messageCatalogMessageID; /* Message catalog message id */

 int ldapError; /* ldap error, if available */

 int sslError; /* ssl error, if available */

 char reserved[16]; /* Reserved for future use */

 unsigned int substitutionTextLength; /* Length of substitution text

 excluding a null-terminator which

 may or may not be present */

 char substitutionText[1]; /* Further info describing the

 error. */

} EimRC;

Field descriptions

memoryProvidedByCaller

(Input)

 The number of bytes the calling application provides for the error code. The

number of bytes provided must be at least 48.

memoryRequiredToReturnData

(Output)

 The length of the error informational message, in bytes, that is necessary for

the API to return. If this is 0, no error was detected and none of the fields that

follow this field in the structure are changed.

returnCode

(Output)

 The errno returned for this API. This is the same as the return value for each

API.

messageCatalogSetNbr

(Output)

 The message set number for the EIM catalog. You can use this with the

messageCatalogID to get the error message text.

messageCatalogMessageID

(Output)

EimRC -- EIM return code parameter

164 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

The message ID number for the EIM catalog. You can use this with the

messageCatalogSetNbr to get the error message text.

ldapError

(Output)

 An error code returned by an LDAP client API. The interpretation of the error

code is in the substitution text.

sslError

(Output)

 An error code returned by an LDAP client API. If not zero, this value will be

displayed in the substitution text as the SSL reason code. Refer to the ldapssl.h

header file in the LDAP Client API document for further information.

reserved

(Output)

 Reserved for future use.

substitutionTextLength

(Output)

 This field is set if any substitution text is returned. If there is no substitution text,

this field is zero.

substitutionText

(Output)

 Message substitution text.

EimRC -- EIM return code parameter

Chapter 11. EIM APIs 165

eimAddAccess

Purpose

Adds the user to an EIM access group identified by the access type.

Format

#include <eim.h>

int eimAddAccess(EimHandle * eim,

 EimAccessUser * accessUser,

 enum EimAccessType accessType,

 char * registryName,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

 accessUser

(Input) A structure that contains the name of the user requiring access. The

user name can be:

v A distinguished name

v A Kerberos Principal

EIM_ACCESS_DN Indicates a distinguished name defined in an

LDAP directory that you can use to bind to the

EIM domain.

EIM_ACCESS_LOCAL_USER

(z/OS does not support this. Use

EIM_ACCESS_DN instead.) It indicates a local

user name on the system where the API runs.

The local user name is converted to the

appropriate access ID for this system.

EIM_ACCESS_KERBEROS Indicates a Kerberos identity, which is

converted to the appropriate access ID. For

example, petejones@therealm is converted to

ibm-kn=petejones@threalm.

The EimAccessUser structure layout follows:

enum EimAccessUserType {

 EIM_ACCESS_DN,

 EIM_ACCESS_KERBEROS,

 EIM_ACCESS_LOCAL_USER

 };

typedef struct EimAccessUser

{

 union {

 char *dn;

 char *kerberosPrincipal;

 char *localUser;

 }user;

 enum EimAccessUserType userType;

}EimAccessUser;

eimAddAccess

166 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

accessType

(Input) The type of access to add. Valid values are:

EIM_ACCESS_ADMIN (0) Administrative authority to the entire EIM

domain.

EIM_ACCESS_REG_ADMIN (1)

Administrative authority to all registries in the

EIM domain.

EIM_ACCESS_REGISTRY (2) Administrative authority to the registry specified

in the registryName parameter.

EIM_ACCESS_IDENTIFIER_ADMIN (3)

Administrative authority to all of the identifiers in

the EIM domain.

EIM_ACCESS_MAPPING_LOOKUP (4)

Authority to perform mapping lookup

operations.

registryName

(Input) The name of the registry for which to add access. Registry names are

case-independent (meaning not case-sensitive). This parameter is used only if

accessType is EIM_ACCESS_REGISTRY. If accessType is anything other than

EIM_ACCESS_REGISTRY, this parameter must be NULL.

 The following special characters are not allowed in registry names:

, = + < > # ; \ *

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimListAccess” on page 286

v “eimListUserAccess” on page 344

v “eimQueryAccess” on page 351

v “eimRemoveAccess” on page 355

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

eimAddAccess

Chapter 11. EIM APIs 167

Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.)Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_ACCESS_TYPE_INVAL (2)

Access type is not valid.

EIMERR_ACCESS_USERTYPE_INVAL (3)

Access user type is not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_REG_MUST_BE_NULL (55)

Registry name must be NULL when access type is not

EIM_ACCESS_REGISTRY.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EROFS LDAP connection is for read-only. Need to connect to master.

EIMERR_READ_ONLY (36) This LDAP connection has ″read-only″ access. A

connection to the master LDAP server with read/write

is required to complete the operation. Use the

eimConnectToMaster API to get a write connection.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following illustrates adding the distinguished name of a user to the EIM

Administrator access group.

#include <eim.h>

.

 .

eimAddAccess

168 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

.

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 EimAccessUser user;

 .

 .

 .

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 .

 .

 .

 /* Set up access user information */

 user.userType = EIM_ACCESS_DN;

 user.user.dn="cn=pete,o=ibm,c=us";

 /* Add access for this user. */

 rc = eimAddAccess(&handle,

 &user,

 EIM_ACCESS_ADMIN,

 NULL,

 err);

 .

 .

 .

eimAddAccess

Chapter 11. EIM APIs 169

eimAddApplicationRegistry

Purpose

Adds an application registry to the EIM domain. An application registry contains a

subset of a system registry’s user IDs.

Format

#include <eim.h>

int eimAddApplicationRegistry(EimHandle * eim,

 char * registryName,

 char * registryType,

 char * description,

 char * systemRegistryName,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

registryName

(Input) The name for this application registry. This name cannot have a NULL

value and must be unique within the EIM domain. The uniqueness of the

registry name is for the domain and not for the system registry that the

application registry belongs to. Registry names are case-independent (meaning,

not case-sensitive).

 The following special characters are not allowed in registry names.

, = + < > # ; \ *

registryType

(Input) A string form of an OID that represents the registry type and a user

name normalization method. The normalization method is necessary because

some registries are case-independent while others are case-dependent. EIM

uses this information to make sure the appropriate search occurs. When a

registry is case-independent, registry user names are converted to uppercase.

See “eim.h” on page 395 for more information. Users can define their own

registry types. See “EIM registry definition” on page 13 for details.

 The following are possible registry types:

v EIM_REGTYPE_RACF

v EIM_REGTYPE_OS400

v EIM_REGTYPE_KERBEROS_EX

v EIM_REGTYPE_KERBEROS_IG

v EIM_REGTYPE_WIN_DOMAIN_KERB_IG

v EIM_REGTYPE_AIX

v EIM_REGTYPE_NDS

v EIM_REGTYPE_LDAP

v EIM_REGTYPE_POLICY_DIRECTOR

v EIM_REGTYPE_TIVOLI_ACCESS_MANAGER

v EIM_REGTYPE_WIN2K

v EIM_REGTYPE_WINDOWS_LOCAL_WS

eimAddApplicationRegistry

170 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

v EIM_REGTYPE_X509

v EIM_REGTYPE_LINUX

v EIM_REGTYPE_DOMINO_LONG

v EIM_REGTYPE_DOMINO_SHORT

description

(Input) The description for this new application registry. This parameter can be

NULL.

systemRegistryName

(Input) The name of the system registry of which this application registry is a

subset. This parameter cannot be NULL.

 The following special characters are not allowed in registry names.

, = + < > # ; \ *

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimAddSystemRegistry” on page 190

v “eimChangeRegistry” on page 203

v “eimListRegistries” on page 317

v “eimRemoveRegistry” on page 374

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

eimAddApplicationRegistry

Chapter 11. EIM APIs 171

Return Value Meaning

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EEXIST EIM registry entry already exists.

EIMERR_REGISTRY_EXISTS (37)

The registry entry already exists within the particular

domain.

EINVAL Input parameter was not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_CHAR_INVAL (21) A restricted character was used in the object name.

Check the API documentation for a list of restricted

characters.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

ENOENT System registry not found.

EIMERR_NO_SYSREG (33) System registry not found.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EROFS LDAP connection is for read-only. Need to connect to master.

EIMERR_READ_ONLY (36) This LDAP connection has ″read-only″ access. A

connection to the master LDAP server with read/write

is required to complete the operation. Use the

eimConnectToMaster API to get a write connection.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example illustrates creating a new EIM application registry:

#include <eim.h>

.

 .

 .

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

eimAddApplicationRegistry

172 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 /* Add new application registry */

 rc = eimAddApplicationRegistry(&handle,

 "MyAppRegistry",

 EIM_REGTYPE_OS400,

 "For App applications",

 "MyRegistry",

 err);

 .

 .

 .

eimAddApplicationRegistry

Chapter 11. EIM APIs 173

eimAddAssociation

Purpose

Associates a local identity in a specified user registry with an EIM identifier. EIM

supports three kinds of associations:

v Source

v Target

v Administrative

(See page “EIM associations” on page 17 for more information about these kinds of

associations.)

All EIM associations are between an EIM identifier and a local user identity. An

association is never directly between local user identities. For an EIM identifier to

be useful in mapping lookup operations, it must have at least one ″source″ or at

least one ″target″ association.

Associated source identities are user identities that are primarily for authentication

purposes. You can use an associated source identity as the source identity of a

mapping lookup operation (that is, with eimGetTargetFromSource), but you cannot

find an associated source identity by making it the target of a mapping lookup

operation.

Associated target identities are user identities that are primarily used to secure

existing data. You can find an associated target identity as the result of a mapping

lookup operation, but you cannot use an associated target identity as the source

identity for a mapping lookup operation.

Administrative associations are used to show that an identity is associated with an

EIM identifier. You cannot use an administrative association as the source or target

of a mapping lookup operation.

You can use a single user identity as both a target and a source. You do this by

creating both a source and a target association for the local user identity with the

appropriate EIM identifier. Although this API supports an association type of

EIM_SOURCE_AND_TARGET, it actually creates two associations.

Format

#include <eim.h>

int eimAddAssociation(EimHandle * eim,

 enum EimAssociationType associationType,

 EimIdentifierInfo * idName,

 char * registryName,

 char * registryUserName,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

associationType

(Input) The type of association to add. Valid values are:

eimAddAssociation

174 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

EIM_TARGET (1)

Add a target association.

EIM_SOURCE (2)

Add a source association.

EIM_SOURCE_AND_TARGET (3)

Add both a source association and a target association.

EIM_ADMIN (4)

Add an administrative association.

idName

(Input) A structure that contains the identifier name for this association. The

layout of the EimIdentifierInfo structure follows:

enum EimIdType {

 EIM_UNIQUE_NAME,

 EIM_ENTRY_UUID,

 EIM_NAME

 };

 typedef struct EimIdentifierInfo

 {

 union {

 char * uniqueName;

 char * entryUUID;

 char * name;

 } id;

 enum EimIdType idtype;

 } EimIdentifierInfo;

idtype

The idtype in the EimIdentifierInfo structure indicates which identifier name

has been provided. EIM_UNIQUE_NAME finds at most one matching

identifier. EIM_NAME results in an error if your EIM domain has more than

one identifier containing the same name.

registryName

(Input) The registry name for the association. Registry names are

case-independent (meaning, not case-sensitive).

 The following special characters are not allowed in registry names:

, = + < > # ; \ *

registryUserName

(Input) The registry user name for the association. The API normalizes the

registry user name according to the normalization method for the defined

registry. The registry user name should begin with a non-blank character.

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, eimrc is set with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimGetAssociatedIdentifiers” on page 254

v “eimListAssociations” on page 291

v “eimRemoveAssociation” on page 359

eimAddAssociation

Chapter 11. EIM APIs 175

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The authority that the access group has to the

EIM data depends on the type of association being added.

 For administrative and source associations, the access groups whose

members have authority to the EIM data for this API follow:

v EIM administrator

v EIM identifiers administrator

For target associations, the access groups whose members have authority

to the EIM data for this API follow:

v EIM administrator

v EIM registries administrator

v EIM registry X administrator

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

EBADNAME Registry or identifier name is not valid or insufficient access to EIM data.

EIMERR_IDNAME_AMBIGUOUS (20)

More than one EIM identifier was found that matches

the requested identifier name.

EIMERR_NOIDENTIFIER (25) EIM identifier not found or insufficient access to EIM

data.

EIMERR_NOREG (28) EIM registry not found or insufficient access to EIM

data.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

eimAddAssociation

176 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Value Meaning

EINVAL Input parameter was not valid.

EIMERR_ASSOC_TYPE_INVAL (4)

Association type is not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_IDNAME_TYPE_INVAL (52)

The EimIdType value is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EMVSERR An MVS environment or internal error has occurred.

EIMERR_ZOS_DATA_CONVERSION (6013)

Error occurred when converting data between code

pages.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EROFS LDAP connection is for read-only. Need to connect to master.

EIMERR_READ_ONLY (36) This LDAP connection has ″read-only″ access. A

connection to the master LDAP server with read/write

is required to complete the operation. Use the

eimConnectToMaster API to get a write connection.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNEXP_OBJ_VIOLATION (56)

Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example illustrates adding an administrative, source, and target

association for the same identifier:

#include <eim.h>

.

 .

 .

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 EimIdentifierInfo x;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

eimAddAssociation

Chapter 11. EIM APIs 177

.

 .

 .

 /* Set up identifier information */

 x.idtype = EIM_UNIQUE_NAME;

 x.id.uniqueName = "mjones";

 /* Add an admin association */

 rc = eimAddAssociation(&handle,

 EIM_ADMIN,

 &x,

 "MyRegistry",

 "maryjones",

 err);

 .

 .

 .

 /* Add a source association */

 rc = eimAddAssociation(&handle,

 EIM_SOURCE,

 &x,

 "kerberosRegistry",

 "mjjones",

 err);

 .

 .

 .

 /* Add a target association */

 rc = eimAddAssociation(&handle,

 EIM_TARGET,

 &x,

 "MyRegistry",

 "maryjo",

 err);

 .

 .

 .

eimAddAssociation

178 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimAddIdentifier

Purpose

Creates an identifier in EIM related to a specific person or entity within an

enterprise. This identifier is used to manage information and identify relationships

for a specific user or identity.

Format

#include <eim.h>

int eimAddIdentifier (EimHandle * eim,

 char * name,

 enum EimIdAction nameInUseAction,

 unsigned int * sizeOfUniqueName,

 char * uniqueName,

 char * description,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

name

(Input) A name to use for this identifier.

 The following characters are special characters that are not allowed in the

identifier name.

, = + < > # ; \ *

nameInUseAction

(Input) The name for the new identifier must be unique. This value indicates the

action to take if the provided name is already in use. Possible values are:

EIM_FAIL (0)

Do not generate a unique name; return an error.

EIM_GEN_UNIQUE (1)

Generate a unique name.

sizeOfUniqueName

(Input/Output) The size of the field in which to return the unique name. EIM

ignores this parameter if nameInUseAction is EIM_FAIL. At input this parameter

is the size the caller provides. On output it contains the actual size returned.

This value should be the size of the name parameter plus an additional 20

bytes.

uniqueName

(Output) The space in which to return the unique identifier for this new EIM

identifier. EIM ignores this parameter if nameInUseAction is EIM_FAIL.

description

(Input) Description for the new EIM identifier. This parameter can be NULL.

eimrc

(Input/Output) The structure in which to return error code information. If the

eimAddIdentifier

Chapter 11. EIM APIs 179

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimChangeIdentifier” on page 199

v “eimGetAssociatedIdentifiers” on page 254

v “eimListIdentifiers” on page 305

v “eimRemoveIdentifier” on page 364

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

v EIM identifiers administrator

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EEXIST Identifier already exists.

EIMERR_IDENTIFIER_EXISTS (19)

EIM Identifier already exists by this name.

eimAddIdentifier

180 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Value Meaning

EINVAL Input parameter was not valid.

EIMERR_CHAR_INVAL (21) A restricted character was used in the object name.

Check the API for a list of restricted characters.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_IDACTION_INVAL (18) Name in use action is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_UNIQUE_SIZE (43) Length of unique name is not valid.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EROFS LDAP connection is for read-only. Need to connect to master.

EIMERR_READ_ONLY (36) This LDAP connection has ″read-only″ access. A

connection to the master LDAP server with read/write

is required to complete the operation. Use the

eimConnectToMaster API to get a write connection.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example illustrates adding an EIM identifier:

#include <eim.h>

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 char unique[30];

 unsigned int sizeOfUnique = 30;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 .

 .

 .

 /* Add new identifier of Mary Smith */

 rc = eimAddIdentifier(&handle,

 "Mary Smith",

 EIM_GEN_UNIQUE,

 &sizeOfUnique,

 unique,

eimAddIdentifier

Chapter 11. EIM APIs 181

"The coolest person",

 err);

 .

 .

 .

eimAddIdentifier

182 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimAddPolicyAssociation

Purpose

Add a policy mapping to a domain. Policy associations specify the target

association for a mapping lookup operation without having to define specific source

associations for all users. The three types of policies allowed are certificate, default

registry, and default domain.

Format

#include <eim.h>

int eimAddPolicyAssociation(EimHandle * eim,

 EimPolicyAssociationInfo * policyAssoc,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

policyAssoc

(Input) The information about the policy association to be added. Valid types

are:

EIM_CERT_FILTER_POLICY

Used to map user (or client) certificates with similar attributes to the

same target identity in the target registry.

EIM_DEFAULT_REG_POLICY

Used to map any user in the specified source registry to the same

target identity in the target registry.

EIM_DEFAULT_DOMAIN_POLICY

Used to map all users to the same target identity in the target registry.

The structure layout is as follows:

 enum EimAssociationType {

 EIM_ALL_ASSOC, /* Not supported on this interface*/

 EIM_TARGET, /* Not supported on this interface*/

 EIM_SOURCE, /* Not supported on this interface*/

 EIM_SOURCE_AND_TARGET, /* Not supported on this interface*/

 EIM_ADMIN, /* Not supported on this interface*/

 EIM_CERT_FILTER_POLICY, /* Policy is a certificate

 filter policy association. */

 EIM_DEFAULT_REG_POLICY, /* Policy is a default

 registry policy association */

 EIM_DEFAULT_DOMAIN_POLICY /* Policy is a default policy for

 the domain. */

 };

 typedef struct EimCertificateFilterPolicyAssociation

 {

 char * sourceRegistry; /* The source registry to add the

 policy association to. */

 char * filterValue; /* The filter value of the policy.*/

 char * targetRegistry; /* The name of the target registry

 that the filter value should

 map to. */

 char * targetRegistryUserName; /* The name of the target registry

 user name that the filter value

 should map to. */

 } EimCertificateFilterPolicyAssociation;

 typedef struct EimDefaultRegistryPolicyAssociation

eimAddPolicyAssociation

Chapter 11. EIM APIs 183

{

 char * sourceRegistry; /* The source registry to add the

 policy association to. */

 char * targetRegistry; /* The name of the target registry

 that the policy should map to. */

 char * targetRegistryUserName; /* The name of the target registry

 user name that the policy

 should map to. */

 } EimDefaultRegistryPolicyAssociation;

 typedef struct EimDefaultDomainPolicyAssociation

 {

 char * targetRegistry; /* The name of the target registry

 that the policy should map to. */

 char * targetRegistryUserName; /* The name of the target registry

 user name that the policy

 should map to. */

 } EimDefaultDomainPolicyAssociation;

 typedef struct EimPolicyAssociationInfo

 {

 enum EimAssociationType type;

 union {

 EimCertificateFilterPolicyAssociation certFilter;

 EimDefaultRegistryPolicyAssociation defaultRegistry;

 EimDefaultDomainPolicyAssociation defaultDomain;

 } policyAssociation;

 } EimPolicyAssociationInfo;

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimRemovePolicyAssociation” on page 367

v “eimListRegistryAssociations” on page 330

v “eimFormatPolicyFilter” on page 243

v “eimAddPolicyFilter” on page 187

v “eimChangeDomain” on page 194

v “eimChangeRegistry” on page 203

v “eimGetTargetFromSource” on page 276

v “eimGetTargetFromIdentifier” on page 270

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

v EIM Registries Administrator

v EIM authority to an individual registry. This authority is needed to the

target registry.

eimAddPolicyAssociation

184 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Values

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

EBADNAME Registry name is not valid, insufficient access to EIM data, or policy filter value is not

found.

EIMERR_NOREG (28)

EIM Registry not found or insufficient access to EIM data.

EIMERR_NOPOLICYFILTER (61)

Policy filter value not found for the specified EIM Registry.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_CHAR_INVAL (21) A restricted character was used in the object name.

Check the API for a list of restricted characters.

EIMERR_FUNCTION_NOT_SUPPORTED (70)

The specified or configured EIM Domain controller

does not support this API.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EROFS The connection is for read-only. Need to connect to master.

EIMERR_READ_ONLY (36) This connection has ″read-only″ access. A connection

to the master LDAP server with read/write is required

to complete this operation. Use eimConnectToMaster

to get a write connection.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

EIMERR_UNEXP_OBJ_VIOLATION (56)

Unexpected object violation.

eimAddPolicyAssociation

Chapter 11. EIM APIs 185

Example

The following example adds a default registry policy association.

#include <eim.h>

#include <string.h>

.

.

.

 int rc;

 char eimerr[250];

 EimRC * err;

 EimHandle handle;

 EimPolicyAssociationInfo assocInfo;

 /* Set up error structure. */

 memset(eimerr,0x00,250);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 250;

.

.

.

 /* Set up policy association information */

 assocInfo.type = EIM_DEFAULT_REG_POLICY;

 assocInfo.policyAssociation.defaultRegistry.sourceRegistry = "MySourceRegistry";

 assocInfo.policyAssociation.defaultRegistry.targetRegistry = "localRegistry";

 assocInfo.policyAssociation.defaultRegistry.targetRegistryUserName = "mjjones";

 /* Add the policy association */

 rc = eimAddPolicyAssociation(&handle, &assocInfo, err);

.

.

.

eimAddPolicyAssociation

186 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimAddPolicyFilter

Purpose

Adds a policy filter to the domain. A policy association can then be added to the

filter value using the eimAddPolicyAssociation API.

Format

#include <eim.h>

int eimAddPolicyFilter(EimHandle * eim,

 EimPolicyFilterInfo * filterInfo,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

filterinfo

(Info) The information about the policy filter to be added. Valid types are:

EIM_CERTIFICATE_FILTER (1)

Identifies that all certificates issued by the same Certificate Authority (CA)

are mapped to the same target identity in the target registry. Or, all

certificates from the same organization are mapped to the same target

identity in the target registry.

 The structure layout is as follows:

 enum EimPolicyFilterType {

 EIM_ALL_FILTERS, /* All policy filters -- not

 supported for this interface. */

 EIM_CERTIFICATE_FILTER /* Policy filter is a certificate

 filter. */

 };

 typedef struct EimCertificatePolicyFilter

 {

 char * sourceRegistry; /* The source registry to add the

 policy filter to. */

 char * filterValue; /* The policy filter value. */

 } EimCertificatePolicyFilter;

 typedef struct EimPolicyFilterInfo

 {

 enum EimPolicyFilterType type;

 union {

 EimCertificatePolicyFilter certFilter;

 } filter;

 } EimPolicyFilterInfo;

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimRemovePolicyFilter” on page 371

v “eimListPolicyFilters” on page 312

v “eimFormatPolicyFilter” on page 243

eimAddPolicyFilter

Chapter 11. EIM APIs 187

v “eimAddPolicyAssociation” on page 183

v “eimRemovePolicyAssociation” on page 367

v “eimListRegistryAssociations” on page 330

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

Return Values

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

EBADNAME Registry name is not valid, insufficient access to EIM data, or policy filter value is not

found.

EIMERR_NOREG (28)

EIM Registry not found or insufficient access to EIM data.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_CHAR_INVAL (21) A restricted character was used in the object name.

Check the API for a list of restricted characters.

EIMERR_FUNCTION_NOT_SUPPORTED (70)

The specified or configured EIM Domain controller

does not support this API.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

eimAddPolicyFilter

188 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Value Meaning

EROFS The connection is for read-only. Need to connect to master.

EIMERR_READ_ONLY (36) This connection has ″read-only″ access. A connection

to the master LDAP server with read/write is required

to complete this operation. Use eimConnectToMaster

to get a write connection.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

EIMERR_UNEXP_OBJ_VIOLATION (56)

Unexpected object violation.

Example

#include <eim.h>

#include <string.h>

.

.

.

 int rc;

 char eimerr[250];

 EimRC * err;

 EimHandle handle;

 EimPolicyFilterInfo filterInfo;

 /* Set up error structure. */

 memset(eimerr,0x00,250);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 250;

.

.

.

 /* Set up policy filter information */

 filterInfo.type = EIM_CERTIFICATE_FILTER;

 filterInfo.filter.certFilter.sourceRegistry = "MySourceRegistry";

 filterInfo.filter.certFilter.filterValue =

 "<IDN>OU=Certified User,O=A Certificate Authority,L=Internet</IDN>";

 /* Add the policy filter */

 rc = eimAddPolicyFilter(&handle,

 &filterInfo,

 err);

.

.

.

eimAddPolicyFilter

Chapter 11. EIM APIs 189

eimAddSystemRegistry

Purpose

Adds a system registry to the EIM domain. After you add it, this registry participates

in the EIM domain. You can make mapping associations only with identities in

registries that are currently participating in the EIM domain.

Format

#include <eim.h>

int eimAddSystemRegistry(EimHandle * eim,

 char * registryName,

 char * registryType,

 char * description,

 char * URI,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

registryName

(Input) The name for this system registry. This name cannot have a NULL value

and must be unique within the EIM domain. Registry names are

case-independent (meaning, not case-sensitive).

 The following special characters are not allowed in registry names.

, = + < > # ; \ *

registryType

(Input) A string form of an OID that represents the registry type and a user

name normalization method. The normalization method is necessary because

some registries are case-independent and others are case-dependent. EIM

uses this information to make sure the appropriate search occurs. When a

registry is case-independent, registry user names are converted to uppercase.

The following are possible registry types:

v EIM_REGTYPE_RACF

v EIM_REGTYPE_OS400

v EIM_REGTYPE_KERBEROS_EX

v EIM_REGTYPE_KERBEROS_IG

v EIM_REGTYPE_WIN_DOMAIN_KERB_IG

v EIM_REGTYPE_AIX

v EIM_REGTYPE_NDS

v EIM_REGTYPE_LDAP

v EIM_REGTYPE_POLICY_DIRECTOR

v EIM_REGTYPE_TIVOLI_ACCESS_MANAGER

v EIM_REGTYPE_WIN2K

v EIM_REGTYPE_WINDOWS_LOCAL_WS

v EIM_REGTYPE_X509

v EIM_REGTYPE_LINUX

eimAddSystemRegistry

190 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

v EIM_REGTYPE_DOMINO_LONG

v EIM_REGTYPE_DOMINO_SHORT

description

(Input) The description for this new system registry entry. This parameter can be

NULL.

URI

(Input) The LDAP URI (Universal Resource Identifier) for this registry, if

available.

 If the system registry is accessable through LDAP, then for documentation

purposes you can set the URI as the URL for the system registry.

Example:

If the following three premises are true:

v The LDAP server is running on z/OS with the host name some.ldap.host

v The LDAP server is listening on port 389

v The LDAP server is configured with the RACF SDBM and has the suffix

cn=RACFA,o=ibm,c=us

Then the URI could be set to the following:

ldap://some.ldap.host:389/profileType=User,cn=RACFA,o=ibm,c=us

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimAddApplicationRegistry” on page 170

v “eimChangeRegistry” on page 203

v “eimListRegistries” on page 317

v “eimRemoveRegistry” on page 374

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

eimAddSystemRegistry

Chapter 11. EIM APIs 191

Return Value Meaning

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EEXIST EIM registry entry already exists.

EIMERR_REGISTRY_EXISTS (37)

The registry entry already exists within the particular

domain.

EINVAL Input parameter was not valid.

EIMERR_CHAR_INVAL (21) A restricted character was used in the object name.

Check the API for a list of restricted characters.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EROFS The connection is for read-only. Need to connect to master.

EIMERR_READ_ONLY (36) This connection has ″read-only″ access. A connection

to the master LDAP server with read/write is required

to complete this operation. Use eimConnectToMaster

to get a write connection.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example illustrates creating a new EIM system registry:

#include <eim.h>

 .

 .

 .

 int rc;

eimAddSystemRegistry

192 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

char eimerr[200];

 EimRC * err;

 EimHandle handle;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 .

 .

 .

 /* Add new system registry */

 rc = eimAddSystemRegistry(&handle,

 "MyRegistry",

 EIM_REGTYPE_OS400,

 "The first registry",

 NULL, /* No URI specified for this registry */

 err);

 .

 .

 .

eimAddSystemRegistry

Chapter 11. EIM APIs 193

eimChangeDomain

Purpose

Changes an attribute for the EIM domain entry.

Format

#include <eim.h>

int eimChangeDomain(char * ldapURL,

 EimConnectInfo connectInfo,

 enum EimDomainAttr attrName,

 char * attrValue,

 enum EimChangeType changeType,

 EimRC * eimrc)

Parameters

ldapURL

(Input) A uniform resource locator (URL) that contains the EIM host information.

This parameter is required. This URL has the following format:

ldap://host:port/dn

or

ldaps://host:port/dn

host:port

Name of the host on which the EIM domain controller is running. (The

port number is optional. If not specified, the default LDAP or LDAPS

port will be used.)

dn Distinguished name of the domain to change.

Examples:

ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us

ldaps://eimsystem:636/ibm-eimDomainName=myEimDomain,o=ibm,c=us

Note: In contrast with ldap, ldaps indicates that this host and port combination

uses SSL and TLS.

connectInfo

(Input) Connect information. This parameter provides the information required to

bind to LDAP. If the system is configured to connect to a secure port,

EimSSLInfo is required.

 For the EIM_SIMPLE connect type, the creds field should contain the

EimSimpleConnectInfo structure with a binddn and password.

EimPasswordProtect determines the level of password protection on the LDAP

bind.

EIM_PROTECT_NO (0) The clear-text password is sent on the bind.

EIM_PROTECT_CRAM_MD5 (1)

The protected password is sent on the bind.

The server side must support cram-md5

protocol to send the protected password.

EIM_PROTECT_CRAM_MD5_OPTIONAL (2)

The protected password is sent on the bind if

eimChangeDomain

194 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

the cram-md5 protocol is supported. Otherwise,

the clear-text password is sent.

For EIM_KERBEROS, the default logon credentials are used. The

kerberos_creds field must be NULL.

For EIM_CLIENT_AUTHENTICATION, the creds field is ignored. The ssl field

must point to a valid EimSSLInfo structure. The keyring field is required in the

EimSSLInfo structure. It can be the name of a System SSL key database file or

a RACF keyring name. The keyring_pw field is required when the keyring is the

name of a System SSL key database field. The certificateLabel field is

optional. If it is NULL the default certificate in the keyring is used.

The structure layouts follow:

 enum EimPasswordProtect {

 EIM_PROTECT_NO,

 EIM_PROTECT_CRAM_MD5,

 EIM_PROTECT_CRAM_MD5_OPTIONAL

 };

 enum EimConnectType {

 EIM_SIMPLE,

 EIM_KERBEROS,

 EIM_CLIENT_AUTHENTICATION

 };

 typedef struct EimSimpleConnectInfo

 {

 enum EimPasswordProtect protect;

 char * bindDn;

 char * bindPw;

 } EimSimpleConnectInfo;

 typedef struct EimSSLInfo

 {

 char * keyring;

 char * keyring_pw;

 char * certificateLabel;

 } EimSSLInfo;

 typedef struct EimConnectInfo

 {

 enum EimConnectType type;

 union {

 gss_cred_id_t * kerberos;

 EimSimpleConnectInfo simpleCreds;

 } creds;

 EimSSLInfo * ssl;

 } EimConnectInfo;

attrName

(Input) The attribute to be updated. Valid values are:

EIM_DOMAIN_DESCRIPTION (0)

Changes the description for the EIM domain.

Valid changeType is EIM_CHG (0).

EIM_DOMAIN_POLICY_ASSOCIATIONS (1)

Change the indicator for whether or not the

domain supports policy associations in a

mapping lookup. By default, the policy

associations are not enabled. Valid changeType

is EIM_ENABLE (3) or EIM_DISABLE(4).

eimChangeDomain

Chapter 11. EIM APIs 195

attrValue

(Input) The new value for the attribute. This value can be a NULL string (for

example, ″″). If the attribute being changed is

EIM_DOMAIN_POLICY_ASSOCIATIONS, this value must be NULL.

changeType

(Input) The type of change to make. This could be add, remove, or change,

enable or disable. The attrName parameter indicates which type is allowed for

each attribute. Valid values are:

EIM_CHG (0)

The attribute is set to the new value.

EIM_ENABLE (3)

Allow policy associations in a mapping lookup.

EIM_DISABLE (4)

Do not allow policy associations in a mapping lookup.

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, eimrc is set with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimCreateDomain” on page 225

v “eimDeleteDomain” on page 234

v “eimListDomains” on page 298

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

EBADNAME EIM domain not found or insufficient access to EIM data.

EIMERR_NODOMAIN (24) EIM domain not found or insufficient access to EIM

data.

eimChangeDomain

196 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Value Meaning

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_CONN_INVAL (54) Connection type is not valid.

EIMERR_FUNCTION_NOT_SUPPORTED (70)

The specified or configured EIM Domain controller

does not support this API.

EIMERR_NOT_SECURE (32) The system is not configured to connect to a secure

port. Connection type of

EIM_CLIENT_AUTHENTICATION is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PROTECT_INVAL (22) The protect parameter in EimSimpleConnectInfo is not

valid.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SSL_REQ (42) The EIM domain controller URL begins with ldaps://,

but the SSL information was not specified as a

parameter to the EIM API.

EIMERR_URL_NODN (45) URL has no DN (required).

EIMERR_URL_NODOMAIN (46) URL has no domain (required).

EIMERR_URL_NOHOST (47) URL does not have a host.

EIMERR_URL_NOTLDAP (49) URL does not begin with ldap.

EIMERR_CREDS_MUST_BE_NULL (58)

The connectInfo parameter of the EIM API does not

have a NULL value for the creds field in the

EimConnectInfo structure.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTSUP Connection type is not supported.

EIMERR_CONN_NOTSUPP (12) Connection type is not supported.

EROFS LDAP connection is for read-only. Need to connect to master. Use the URL for the master

EIM domain controller which is writeable. A writeable connection can also be established

by using the EimConnectToMaster API.

EIMERR_URL_READ_ONLY (50)

LDAP connection can be made only to a replica LDAP

server. Change the connection information to a writable

server and try the request again.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

eimChangeDomain

Chapter 11. EIM APIs 197

Example

The following example changes the description of the specified EIM domain and

enables the use of policy associations for the domain:

#include <eim.h>

#include <stdio.h>

#include <string.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[200];

 EimRC * err;

 EimConnectInfo con;

 char * ldapURL = "ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

 /* Set up connection information */

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=admin";

 con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 /* Change the description for this domain. */

 if (0 != (rc = eimChangeDomain(ldapURL,

 con,

 EIM_DOMAIN_DESCRIPTION,

 "This is the new description",

 EIM_CHG,

 err)))

 printf("Change domain description failed; return code = %d", rc);

 /* Set up connection information for second call */

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=admin";

 con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* reset error structure. */

 memset(eimerr,0x00,200);

 err->memoryProvidedByCaller = 200;

 /* Enable Policy Associations for this domain. */

 if (0 != (rc = eimChangeDomain(ldapURL,

 con,

 EIM_DOMAIN_POLICY_ASSOCIATIONS,

 NULL,

 EIM_ENABLE,

 err)))

 printf("Enable policy associations failed; return code = %d", rc);

 return 0;

}

eimChangeDomain

198 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimChangeIdentifier

Purpose

Modifies an existing EIM identifier.

Format

#include <eim.h>

int eimChangeIdentifier(EimHandle * eim,

 EimIdentifierInfo * idName,

 enum EimIdentifierAttr attrName,

 char * attrValue,

 enum EimChangeType changeType,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

idName

(Input) A structure that contains the name for this identifier.

 The following special characters are not allowed in identifier names.

, = + < > # ; \ *

The layout of the EimIdentifierInfo structure follows:

 enum EimIdType {

 EIM_UNIQUE_NAME,

 EIM_ENTRY_UUID,

 EIM_NAME

 };

 typedef struct EimIdentifierInfo

 {

 union {

 char * uniqueName;

 char * entryUUID;

 char * name;

 } id;

 enum EimIdType idtype;

 } EimIdentifierInfo;

idtype

The idtype in the EimIdentifierInfo structure indicates which identifier name

has been provided. EIM_UNIQUE_NAME finds at most one matching

identifier. EIM_NAME results in an error if your EIM domain has more than

one identifier containing the same name.

attrName

The attribute to be updated. Valid values are:

EIM_IDENTIFIER_DESCRIPTION (0)

Change the identifier description. Valid

changeType is EIM_CHG (0).

EIM_IDENTIFIER_NAME (1) Add or remove a name attribute for this

identifier. Valid changeType can be:

eimChangeIdentifier

Chapter 11. EIM APIs 199

v EIM_ADD (1)

v EIM_RMV (2)

EIM_IDENTIFIER_ADDL_INFO (2)

Add or remove an additional information

attribute for this identifier. Additional information

is user-defined data. Valid changeType can be:

v EIM_ADD (1)

v EIM_RMV (2)

attrValue

(Input) The new value for the attribute. This value can be a NULL string (for

example, ″″).

changeType

(Input) The type of change to make. On z/OS, this can be one of the following:

EIM_CHG (0)

EIM sets the attribute to the new value. EIM creates the attribute if it

does not already exist.

EIM_ADD (1)

EIM adds the attribute and its value to the identifier. EIM creates the

attribute if it does not already exist.

EIM_RMV (2)

EIM removes attrValue from the attribute in the identifier entry. EIM

removes the attribute itself from the entry if no values remain for the

attribute. To remove the entire attribute, use NULL for attrValue.

The attrName parameter indicates the type allowed for each attribute.

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimAddIdentifier” on page 179

v “eimGetAssociatedIdentifiers” on page 254

v “eimListIdentifiers” on page 305

v “eimRemoveIdentifier” on page 364

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

v EIM identifiers administrator

z/OS authorization

No special authorization is needed.

eimChangeIdentifier

200 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

EBADNAME Identifier name is not valid or insufficient access to EIM data.

EIMERR_IDNAME_AMBIGUOUS (20)

More than one EIM identifier was found that matches

the requested Identifier name.

EIMERR_NOIDENTIFIER (25) EIM identifier not found or insufficient access to EIM

data.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_ATTR_INVAL (5) Attribute name is not valid.

EIMERR_CHGTYPE_INVAL (9) This change type is not valid with the requested

attribute. Please check the API documentation.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_IDNAME_TYPE_INVAL (52)

The EimIdType value is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EROFS LDAP connection is for read-only. Need to connect to master.

EIMERR_READ_ONLY (36) This LDAP connection has ″read-only″ access. A

connection to the master LDAP server with read/write

is required to complete the operation. Use the

eimConnectToMaster API to get a write connection.

eimChangeIdentifier

Chapter 11. EIM APIs 201

Return Value Meaning

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example illustrates changing an EIM identifier description:

#include <eim.h>

.

 .

 .

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 EimIdentifierInfo idInfo;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 .

 .

 .

 /* Set up identifier information */

 idInfo.idtype = EIM_UNIQUE_NAME;

 idInfo.id.uniqueName = "Mary Smith";

 /* Change the description of the identifier */

 rc = eimChangeIdentifier(&handle,

 &idInfo,

 EIM_IDENTIFIER_DESCRIPTION,

 "This is a new description",

 EIM_CHG,

 err);

 .

 .

 .

eimChangeIdentifier

202 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimChangeRegistry

Purpose

Changes the attribute of a registry participating in the EIM domain.

Format

#include <eim.h>

int eimChangeRegistry(EimHandle * eim,

 char * registryName,

 enum EimRegistryAttr attrName,

 char * attrValue,

 enum EimChangeType changeType,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

registryName

(Input) The name of the registry to change. Registry names are

case-independent (meaning, not case-sensitive).

 The following special characters are not allowed in registry names:

, = + < > # ; \ *

attrName

(Input) The attribute to update. Valid values are:

EIM_REGISTRY_DESCRIPTION (0)

Change the registry description. Valid

changeType is EIM_CHG (0).

EIM_REGISTRY_LABELEDURI (1)

Change the URI for the system registry. Valid

changeType is EIM_CHG (0).

EIM_REGISTRY_MAPPING_LOOKUP (2)

Change the indicator for whether or not the

registry supports mapping lookup operations.

By default, mapping lookup operations are

supported. Valid changeType is EIM_ENABLE

(3) or EIM_DISABLE (4).

EIM_REGISTRY_POLICY_ASSOCIATIONS (3)

Change the indicator for whether or not the

registry supports policy associations in a

mapping lookup. By default, the policy

associations are not supported. Valid

changeType is EIM_ENABLE (3) or

EIM_DISABLE (4).

attrValue

(Input) The new value for the attribute. The value can be a NULL string (for

example, ″″). Specifically, if the attribute being changed is

EIM_REGISTRY_MAPPING_LOOKUP or

EIM_REGISTRY_POLICY_ASSOCIATIONS, this value must be NULL.

eimChangeRegistry

Chapter 11. EIM APIs 203

changeType

(Input) The type of change to make. On z/OS, this could be:

EIM_CHG (0)

EIM sets the attribute to the new value (0).

EIM_ENABLE (3)

Enable the change specified by attrname.

EIM_DISABLE (4)

Disable the change specified by attrname.

The attrName parameter indicates which changeType is allowed for each

attribute.

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimAddApplicationRegistry” on page 170

v “eimAddSystemRegistry” on page 190

v “eimListRegistries” on page 317

v “eimRemoveRegistry” on page 374

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

v EIM registries administrator

v EIM registry X administrator

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

EBADNAME Registry not found or insufficient access to EIM data.

EIMERR_NOREG (28) EIM registry not found or insufficient access to EIM

data.

eimChangeRegistry

204 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Value Meaning

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_ATTR_INVAL (5) Attribute name is not valid.

EIMERR_CHGTYPE_INVAL (9) This change type is not valid with the requested

attribute. Please check the API documentation.

EIMERR_FUNCTION_NOT_SUPPORTED (70)

The specified or configured EIM Domain controller

does not support this API.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EROFS LDAP connection is for read-only. Need to connect to master. Use eimConnectToMaster to

get a write connection or use the URL for the master EIM domain controller which is

writeable.

EIMERR_READ_ONLY (36) This LDAP connection has ″read-only″ access. A

connection to the master LDAP server with read/write

is required to complete this operation. Use

eimConnectToMaster to get a write connection.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example illustrates changing the description for the registry and

enables the use of policy associations for the registry:

#include <eim.h>

#include <string.h>

.

.

.

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

.

eimChangeRegistry

Chapter 11. EIM APIs 205

.

.

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 /* Change the description for this registry */

 rc = eimChangeRegistry(&handle,

 "MyAppRegistry",

 EIM_REGISTRY_DESCRIPTION,

 "New description",

 EIM_CHG,

 err);

.

.

.

 /* reset error structure */

 memset(eimerr,0x00,200);

 err->memoryProvidedByCaller = 200;

 /* Enable policy associations for this registry */

 rc = eimChangeRegistry(&handle,

 "MyAppRegistry",

 EIM_REGISTRY_POLICY_ASSOCIATIONS,

 NULL,

 EIM_ENABLE,

 err);

.

.

.

eimChangeRegistry

206 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimChangeRegistryAlias

Purpose

Adds or removes a registry alias for the defined registry.

Using registry aliases is one way to decouple registry names that developers use

from the registry names that administrators choose. Developers who are designing

applications know the registry type their application uses and choose the registry

alias their program will use. Developers inform the administrator which registry

types their applications use and the EIM registry aliases to associate with that

registry type. The administrator adds the registry alias to the EIM registry of the

appropriate type. The application can use the eimGetRegistryNameFromAlias API;

given a registry alias, this API returns the registry name for the entry or entries with

that registry alias.

Format

#include <eim.h>

int eimChangeRegistryAlias(EimHandle * eim,

 char * registryName,

 char * aliasType,

 char * aliasValue,

 enum EimChangeType changeType,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

registryName

(Input) The name of the registry to change. Registry names are

case-independent (meaning, not case-sensitive).

 The following special characters are not allowed in registry names:

, = + < > # ; \ *

aliasType

(Input) A type of alias for this registry. The registry types that EIM provides

include the following:

v EIM_ALIASTYPE_DNS ″DNSHostName″

v EIM_ALIASTYPE_KERBEROS ″KerberosRealm″

v EIM_ALIASTYPE_ISSUER ″IssuerDN″

v EIM_ALIASTYPE_ROOT ″RootDN″

v EIM_ALIASTYPE_TCPIP ″TCPIPAddress″

v EIM_ALIASTYPE_LDAPDNSHOSTNAME ″LdapDnsHostName″

v EIM_ALIASTYPE_OTHER ″Other″

To view the eim.h sample, refer to “eim.h” on page 395. Users can define their

own registry alias types. See “EIM registry definitions and aliasing” on page 15

for details.

aliasValue

(Input) The value for this alias.

eimChangeRegistryAlias

Chapter 11. EIM APIs 207

Note: Do not include the asterisk (*) wild card character in names for registry

aliases.

changeType

(Input) The type of change to make. This could be add or remove. Use

EIM_ADD(1) to add an alias, and EIM_RMV(2) to remove an alias.

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimGetRegistryNameFromAlias” on page 265

v “eimListRegistryAliases” on page 325

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

v EIM registries administrator

v EIM registry X administrator

z/OS authorization

No special authorization is necessary.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

EBADNAME Registry not found or insufficient access to EIM data.

EIMERR_NOREG (28) EIM registry not found or insufficient access to EIM

data.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.)Error occurred when

converting data between code pages.

eimChangeRegistryAlias

208 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Value Meaning

EINVAL Input parameter was not valid.

EIMERR_CHGTYPE_INVAL (9) This change type is not valid with the requested

attribute. Please check the API documentation.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EROFS LDAP connection is for read-only. Need to connect to master.

EIMERR_READ_ONLY (36) This LDAP connection has ″read-only″ access. A

connection to the master LDAP server with read/write

is required to complete the operation. Use the

eimConnectToMaster API to get a write connection.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example illustrates adding DNS and TCP/IP alias to the registry:

#include <eim.h>

.

 .

 .

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 .

 .

 .

 /* Add a dns alias for this registry */

 rc = eimChangeRegistryAlias(&handle,

 "MyRegistry",

 EIM_ALIASTYPE_DNS,

 "Clueless",

 EIM_ADD,

 err);

 .

 .

eimChangeRegistryAlias

Chapter 11. EIM APIs 209

.

 /* Add a tcpip address as an alias */

 rc = eimChangeRegistryAlias(&handle,

 "MyRegistry",

 EIM_ALIASTYPE_TCPIP,

 "254.237.190.239",

 EIM_ADD,

 err);

 .

 .

 .

eimChangeRegistryAlias

210 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimChangeRegistryUser

Purpose

Changes the attributes for a target registry user.

There are situations when a mapping lookup operation can return more than one

user. Applications can choose to use information in the additional information field to

distinguish between returned target identities and determine which to use. For

example, suppose Joe has two identities in a specific registry X, joeuser and

joeadmin. An application provider can tell the administrator to add additional

information, for example, ″appname-admin,″ to the appropriate registry user -- in

this case, joeadmin. The application can provide this additional information on the

lookup APIs, eimGetTargetFromSource and eimGetTargetFromIdentifier.

Format

#include <eim.h>

int eimChangeRegistryUser(EimHandle * eim,

 char * registryName,

 char * registryUserName,

 enum EimRegistryUserAttr attrName,

 char * attrValue,

 enum EimChangeType changeType,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

registryName

(Input) The name of the registry that contains this user. Registry names are

case-independent (meaning, not case-sensitive).

 The following special characters are not allowed in registry names:

, = + < > # ; \ *

registryUserName

(Input) The name of the user to change in this registry. The registry user name

should begin with a non-blank character.

attrName

The attribute to update. Valid values are:

EIM_REGISTRYUSER_DESCRIPTION (0)

Change the registry description. Valid

changeType is EIM_CHG (0).

EIM_REGISTRYUSER_ADDL_INFO (1)

Add or remove additional information for this

user. You can have more than one

AdditionalInfo field. Valid changeType is

EIM_ADD (1) or EIM_RMV (2).

attrValue

(Input) The new value for the attribute. This value can be a NULL string (for

example, ″″).

eimChangeRegistryUser

Chapter 11. EIM APIs 211

changeType

(Input) The type of change to make. This could be add, remove, or change. On

z/OS, this can be one of the following:

EIM_CHG (0)

EIM sets the attribute to the new value. EIM creates the attribute if it

does not already exist.

EIM_ADD (1)

EIM adds the attribute and its value to the identifier. EIM creates the

attribute if it does not already exist.

EIM_RMV (2)

EIM removes the given attribute value from the attribute in the identifier

entry. EIM removes the attribute itself from the entry if no values remain

for the attribute. To remove the entire attribute, use NULL for the

attribute value.

The attrName parameter indicates the type allowed for each attribute.

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimListRegistryUsers” on page 338

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

v EIM registries administrator

v EIM registry X administrator

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

eimChangeRegistryUser

212 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Value Meaning

EBADNAME Registry not found or insufficient access to EIM data.

EIMERR_NOREG (28) EIM registry not found or insufficient access to EIM

data.

EIMERR_NOREGUSER (29) Registry user not found or insufficient access to EIM

data.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_ATTR_INVAL (5) Attribute name is not valid.

EIMERR_CHGTYPE_INVAL (9) This change type is not valid with the requested

attribute. Please check the API documentation.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EROFS LDAP connection is for read-only. Need to connect to master.

EIMERR_READ_ONLY (36) This LDAP connection has ″read-only″ access. A

connection to the master LDAP server with read/write

is required to complete the operation. Use the

eimConnectToMaster API to get a write connection.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNEXP_OBJ_VIOLATION (56)

Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example illustrates changing the description and adding additional

information for a target registry user.

#include <eim.h>

 .

 .

eimChangeRegistryUser

Chapter 11. EIM APIs 213

.

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 .

 .

 .

 /* Change the registry user’s description */

 rc = eimChangeRegistryUser(&handle,

 "MyRegistry",

 "mjjones",

 EIM_REGISTRYUSER_DESCRIPTION,

 "cool customer",

 EIM_CHG,

 err);

 /* Add additional information to the registry user*/

 rc = eimChangeRegistryUser(&handle,

 "MyRegistry",

 "mjjones",

 EIM_REGISTRYUSER_ADDL_INFO,

 "security officer",

 EIM_ADD,

 err);

 /* Add additional information to the registry user*/

 rc = eimChangeRegistryUser(&handle,

 "MyRegistry",

 "mjjones",

 EIM_REGISTRYUSER_ADDL_INFO,

 "administrator",

 EIM_ADD,

 err);

eimChangeRegistryUser

214 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimConnect

Purpose

Connects to the EIM domain.

Format

#include <eim.h>

int eimConnect(EimHandle * eim,

 EimConnectInfo connectInfo,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns.

connectInfo

(Input) Connect information. This parameter provides the information required to

bind to LDAP. If the system is configured to connect to a secure port,

EimSSLInfo is required.

 For the EIM_SIMPLE connect type, the creds field should contain the

EimSimpleConnectInfo structure with a binddn and password.

If the connect type is EIM_SIMPLE and you provide no binddn or password, the

connection information extracted from the RACF database during the

eimCreateHandle API call is used.

Note: Both the bindDn and bindPw must be NULL. Also, the previous call to

eimCreateHandle must have been made with a NULL ldapURL in order

for eimCreateHandle to have extracted the information from the RACF

database. The resulting handle should then be used with eimConnect. If

the ldapURL was not NULL, then no information was extracted from the

RACF database and a NULL bindDn and bindPw will result in an

EIMERR_PARM_REQ error.

EimPasswordProtect determines the level of password protection on the LDAP

bind.

EIM_PROTECT_NO (0) The clear-text password is sent on the bind.

EIM_PROTECT_CRAM_MD5 (1)

The protected password is sent on the bind.

The server side must support cram-md5

protocol to send the protected password.

EIM_PROTECT_CRAM_MD5_OPTIONAL (2)

The protected password is sent on the bind if

the cram-md5 protocol is supported. Otherwise,

the clear-text password is sent.

For EIM_KERBEROS, the default logon credentials are used. The

kerberos_creds field must be NULL.

For EIM_CLIENT_AUTHENTICATION, the creds field is ignored. The ssl field

must point to a valid EimSSLInfo structure. The keyring field is required in the

EimSSLInfo structure. It can be the name of a System SSL key database file or

a RACF keyring name. The keyring_pw field is required when the keyring is the

eimConnect

Chapter 11. EIM APIs 215

name of a System SSL key database field. The certificateLabel field is

optional. If it is NULL the default certificate in the keyring is used.

The structure layouts follow:

 enum EimPasswordProtect {

 EIM_PROTECT_NO,

 EIM_PROTECT_CRAM_MD5,

 EIM_PROTECT_CRAM_MD5_OPTIONAL

 };

 enum EimConnectType {

 EIM_SIMPLE,

 EIM_KERBEROS,

 EIM_CLIENT_AUTHENTICATION

 };

 typedef struct EimSimpleConnectInfo

 {

 enum EimPasswordProtect protect;

 char * bindDn;

 char * bindPw;

 } EimSimpleConnectInfo;

 typedef struct EimSSLInfo

 {

 char * keyring;

 char * keyring_pw;

 char * certificateLabel;

 } EimSSLInfo;

 typedef struct EimConnectInfo

 {

 enum EimConnectType type;

 union {

 gss_cred_id_t * kerberos;

 EimSimpleConnectInfo simpleCreds;

 } creds;

 EimSSLInfo * ssl;

 } EimConnectInfo;

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimConnectToMaster” on page 220

v “eimCreateHandle” on page 230

v “eimDestroyHandle” on page 239

v “eimGetAttribute” on page 261

v “eimSetAttribute” on page 383

Authorization

z/OS authorization

The calling application can be running in system key or supervisor state or

one of the following:

eimConnect

216 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

v The RACF user ID of the caller’s address space has READ access to the

BPX.SERVER profile in the FACILITY class

v The current RACF user ID has READ authority to the IRR.RDCEKEY

profile in the FACILITY class

Applications that are not authorized (problem program state and keys) must

be program controlled (extattr +p) and the FACILITY class must be active

and RACLISTed before the application will be granted authority to use this

SAF service.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EBADDATA eimrc is not valid.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_CONN_INVAL (54) Connection type is not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_NOT_SECURE (32) The system is not configured to connect to a secure

port. Connection type of

EIM_CLIENT_AUTHENTICATION is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_SSL_REQ (42) The system is configured to connect to a secure port.

EimSSLInfo is required.

EIMERR_CREDS_MUST_BE_NULL (58)

The connectInfo parameter of the EIM API does not

have a NULL value for the creds field in the

EimConnectInfo structure.

EISCONN A connection has already been established.

EIMERR_CONN (11) Connection already exists.

EMVSSAFEXTRERR A connection has already been established.

EIMERR_ZOS_R_DCEKEY (6008)

Callable service failed.

EIMERR_ZOS_R_DCEKEY_BINDPW (6009)

Callable service failed. Bind password is missing.

eimConnect

Chapter 11. EIM APIs 217

Return Value Meaning

EMVSSAF2ERR SAF/RACF error

EIMERR_ZOS_NO_ACEE (6010) No task or address space ACEE found.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTSUP Connection type is not supported.

EIMERR_CONN_NOTSUPP (12) Connection type is not supported.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example illustrates connecting to an EIM domain:

#include <eim.h>

#include <string.h>

.

.

.

int rc;

char eimerr[200];

EimRC * err;

EimHandle handle;

EimConnectInfo con;

/* Set up error structure. */

memset(eimerr,0x00,200);

err = (EimRC *)eimerr;

err->memoryProvidedByCaller = 200;

/* Set up connection information */

con.type = EIM_SIMPLE;

con.creds.simpleCreds.protect = EIM_PROTECT_NO;

con.creds.simpleCreds.bindDn = "cn=admin";

con.creds.simpleCreds.bindPw = "secret";

con.ssl = NULL;

.

.

.

/* Connect to LDAP URL defined by handle with specified connection credentials */

rc = eimConnect(&handle, con, err);

.

.

.

The following example illustrates connecting to an EIM domain using the default

Kerberos credential for authentication:

#include <eim.h>

#include <string.h>

.

.

.

int rc;

char eimerr [200];

eimConnect

218 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

EimRC *err;

EimHandle handle;

EimConnectInfo con;

/*Set up error structure.*/

memset(eimerr,0x00,200);

err =(EimRC *)eimerr;

err->memoryProvidedByCaller =200;

/*Create new eim handle for a specified ldapURL */

ldapURL ="ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

rc =eimCreateHandle(&handle,ldapURL,err);

.

.

.

/*Set up connection information */

memset(&con, 0x00, sizeof(con));

con.type =EIM_KERBEROS;

/*Connect to LDAP URL defined in handle with the specified connection credentials*/

rc =eimConnect(&handle,con,err);

.

.

.

eimConnect

Chapter 11. EIM APIs 219

eimConnectToMaster

Purpose

Connects to the EIM master domain controller. You should use this API if an earlier

API invocation returned a referral error (EROFS). A referral error indicates that the

current EIM connection is to a replica system. To make updates, you must make an

explicit connection to the master system. If the host system is not a replica, then

the master information retrieved is the same as the host and port defined in the

handle.

Format

#include <eim.h>

int eimConnectToMaster(EimHandle * eim,

 EimConnectInfo connectInfo,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns.

connectInfo

(Input) Connect information. This parameter provides the information required to

bind to LDAP. If the system is configured to connect to a secure port,

EimSSLInfo is required.

 For the EIM_SIMPLE connect type, the creds field should contain the

EimSimpleConnectInfo structure with a binddn and password.

On z/OS, if the connect type is EIM_SIMPLE and you provide no bindDn or

bindPw, the connection information extracted from the RACF database during

the eimCreateHandle API call is used.

Note: Both the bindDn and bindPw must be NULL. Also, the previous call to

eimCreateHandle must have been made with a NULL ldapURL in order

for eimCreateHandle to have extracted the information from the RACF

database. The resulting handle should then be used with

eimConnectToMaster. If the ldapURL was not NULL, then no information

was extracted from the RACF database and a NULL bindDn and bindPw

will result in an EIMERR_PARM_REQ error.

EimPasswordProtect determines the level of password protection on the LDAP

bind.

EIM_PROTECT_NO (0) The clear-text password is sent on the bind.

EIM_PROTECT_CRAM_MD5 (1)

The protected password is sent on the bind.

The server side must support cram-md5

protocol to send the protected password.

EIM_PROTECT_CRAM_MD5_OPTIONAL (2)

The protected password is sent on the bind if

the cram-md5 protocol is supported.

For EIM_KERBEROS, the default logon credentials are used. The

kerberos_creds field must be NULL.

eimConnectToMaster

220 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

For EIM_CLIENT_AUTHENTICATION, the creds field is ignored. The ssl field

must point to a valid EimSSLInfo structure. The keyring field is required in the

EimSSLInfo structure. It can be the name of a System SSL key database file or

a RACF keyring name. The keyring_pw field is required when the keyring is the

name of a System SSL key database field. The certificateLabel field is

optional. If it is NULL the default certificate in the keyring is used.

The structure layouts follow:

 enum EimPasswordProtect {

 EIM_PROTECT_NO,

 EIM_PROTECT_CRAM_MD5,

 EIM_PROTECT_CRAM_MD5_OPTIONAL

 };

 enum EimConnectType {

 EIM_SIMPLE,

 EIM_KERBEROS,

 EIM_CLIENT_AUTHENTICATION

 };

 typedef struct EimSimpleConnectInfo

 {

 enum EimPasswordProtect protect;

 char * bindDn;

 char * bindPw;

 } EimSimpleConnectInfo;

 typedef struct EimSSLInfo

 {

 char * keyring;

 char * keyring_pw;

 char * certificateLabel;

 } EimSSLInfo;

 typedef struct EimConnectInfo

 {

 enum EimConnectType type;

 union {

 gss_cred_id_t * kerberos;

 EimSimpleConnectInfo simpleCreds;

 } creds;

 EimSSLInfo * ssl;

 } EimConnectInfo;

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimConnect” on page 215

v “eimCreateHandle” on page 230

v “eimDestroyHandle” on page 239

v “eimGetAttribute” on page 261

v “eimSetAttribute” on page 383

eimConnectToMaster

Chapter 11. EIM APIs 221

Authorization

z/OS authorization

The calling application can be running in system key or supervisor state or

one of the following:

v The RACF user ID of the caller’s address space has READ access to the

BPX.SERVER profile in the FACILITY class

v The current RACF user ID has READ authority to the IRR.RDCEKEY

profile in the FACILITY class

Applications that are not authorized (problem program state and keys) must

be program controlled (extattr +p) and the FACILITY class must be active

and RACLISTed before the application will be granted authority to use this

SAF service.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_CONN_INVAL (54) Connection type is not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_NOT_SECURE (32) The system is not configured to connect to a secure

port. Connection type of

EIM_CLIENT_AUTHENTICATION is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PROTECT_INVAL (22) The protect parameter in EimSimpleConnectInfo is not

valid.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_SSL_REQ (42) The system is configured to connect to a secure port.

EimSSLInfo is required.

EIMERR_CREDS_MUST_BE_NULL (58)

The connectInfo parameter of the EIM API does not

have a NULL value for the creds field in the

EimConnectInfo structure.

eimConnectToMaster

222 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Value Meaning

EISCONN A connection has already been established.

EIMERR_CONN (11) Connection already exists.

EMVSSAFEXTRERR SAF/EXTRACT error.

EIMERR_ZOS_R_DCEKEY_BINDPW (6008)

R_DCEKEY callable service failed.

EIMERR_ZOS_R_DCEKEY (6009)

R_ DCEKEY callable service failed. Bind password is

missing.

EMVSSAF2ERR SAF/RACF error

EIMERR_ZOS_NO_ACEE (6010) No task or address space ACEE found.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

(z/OS does not return this value.)

ENOTSUP A connection has already been established.

EIMERR_CONN_NOTSUPP (12) Connection type is not supported.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example illustrates connecting to an EIM master domain:

#include <eim.h>

#include <string.h>

.

.

.

int rc;

char eimerr[200];

EimRC * err;

EimHandle handle;

EimConnectInfo con;

/* Set up error structure. */

memset(eimerr,0x00,200);

err = (EimRC *)eimerr;

err->memoryProvidedByCaller = 200;

/* Set up connection information */

con.type = EIM_SIMPLE;

con.creds.simpleCreds.protect = EIM_PROTECT_NO;

con.creds.simpleCreds.bindDn = "cn=admin";

con.creds.simpleCreds.bindPw = "secret";

con.ssl = NULL;

.

.

.

eimConnectToMaster

Chapter 11. EIM APIs 223

/* Connect to master LDAP URL defined in handle with the specified connection credentials*/

rc = eimConnectToMaster(&handle, con, err);

.

.

.

The following example illustrates connecting to an EIM master domain using client

authentication, referencing the default digital certificate in a key database file:

#include <eim.h>

#include <string.h>

 .

 .

 .

 Int rc;

 Char eimerr [200];

 EimRC *err;

 EimHandle handle;

 EimConnectInfo con;

 EimSSLInfo sslinfo;

 char *ldapURL;

 /*Set up error structure.*/

 memset(eimerr,0x00,200);

 err =(EimRC *)eimerr;

 err->memoryProvidedByCaller =200;

 /*Create new eim handle for a secure SSL host */

 ldapURL ="ldaps://eimsystem:636/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

 rc =eimCreateHandle(&handle,ldapURL,err);

 .

 .

 .

 /*Set up SSL information */

 sslinfo.keyring ="/u/eimuser/ldapclient.kdb";

 sslinfo.keyring_pw ="secret";

 sslinfo.certificateLabel =NULL;

 /*Set up connection information */

 memset(&con, 0x00, sizeof(con));

 con.type =EIM_CLIENT_AUTHENTICATION;

 con.ssl =&sslinfo;

 /*Connect to master LDAP URL defined in handle with specified connection credentials*/

 rc =eimConnectToMaster(&handle,con,err);

 .

 .

 .

eimConnectToMaster

224 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimCreateDomain

Purpose

Creates an EIM domain on the specified EIM domain controller.

Format

#include <eim.h>

int eimCreateDomain(char * ldapURL,

 EimConnectInfo connectInfo,

 char * description,

 EimRC * eimrc)

Parameters

ldapURL

(Input) A uniform resource locator (URL) that contains the EIM host information.

This parameter is required. This URL has the following format:

ldap://host:port/dn

or

ldaps://host:port/dn

host:port

Name of the host on which the EIM domain controller is running. (The

port number is optional. If not specified, the default LDAP or LDAPS

port will be used.)

dn Distinguished name of the domain to create.

Examples:

ldap://systemx:389/ibm-eimDomainName=myEimDomain,o=myCompany,c=us

ldaps://systemy:636/ibm-eimDomainName=thisEimDomain,o=myCompany,c=us

Note: In contrast with ldap, ldaps indicates that this host and port combination

uses SSL and TLS.

connectInfo

(Input) Connect information. This parameter provides the information required to

bind to LDAP. If the system is configured to connect to a secure port,

EimSSLInfo is required.

 For the EIM_SIMPLE connect type, the creds field should contain the

EimSimpleConnectInfo structure with a binddn and password.

EimPasswordProtect determines the level of password protection on the LDAP

bind.

EIM_PROTECT_NO (0) The clear-text password is sent on the bind.

EIM_PROTECT_CRAM_MD5 (1)

The protected password is sent on the bind.

The server side must support cram-md5

protocol to send the protected password.

EIM_PROTECT_CRAM_MD5_OPTIONAL (2)

The protected password is sent on the bind if

the cram-md5 protocol is supported. Otherwise,

the clear-text password is sent.

eimCreateDomain

Chapter 11. EIM APIs 225

For EIM_KERBEROS, the default logon credentials are used. The

kerberos_creds field must be NULL.

For EIM_CLIENT_AUTHENTICATION, the creds field is ignored. The ssl field

must point to a valid EimSSLInfo structure. The keyring field is required in the

EimSSLInfo structure. It can be the name of a System SSL key database file or

a RACF keyring name. The keyring_pw field is required when the keyring is the

name of a System SSL key database field. The certificateLabel field is

optional. If it is NULL the default certificate in the keyring is used.

The structure layouts follow:

 enum EimPasswordProtect {

 EIM_PROTECT_NO,

 EIM_PROTECT_CRAM_MD5,

 EIM_PROTECT_CRAM_MD5_OPTIONAL

 };

 enum EimConnectType {

 EIM_SIMPLE,

 EIM_KERBEROS,

 EIM_CLIENT_AUTHENTICATION

 };

 typedef struct EimSimpleConnectInfo

 {

 enum EimPasswordProtect protect;

 char * bindDn;

 char * bindPw;

 } EimSimpleConnectInfo;

 typedef struct EimSSLInfo

 {

 char * keyring;

 char * keyring_pw;

 char * certificateLabel;

 } EimSSLInfo;

 typedef struct EimConnectInfo

 {

 enum EimConnectType type;

 union {

 gss_cred_id_t * kerberos;

 EimSimpleConnectInfo simpleCreds;

 } creds;

 EimSSLInfo * ssl;

 } EimConnectInfo;

description

(Input) Textual description for the new EIM domain entry. This parameter can be

NULL.

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimChangeDomain” on page 194

v “eimDeleteDomain” on page 234

eimCreateDomain

226 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

v “eimListDomains” on page 298

Authorization

EIM data

LDAP administrators have the authority to create an EIM domain.

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EEXIST EIM domain already exists.

EIMERR_DOMAIN_EXISTS (14) EIM domain already exists in EIM.

eimCreateDomain

Chapter 11. EIM APIs 227

Return Value Meaning

EINVAL Input parameter was not valid.

EIMERR_CHAR_INVAL (21) A restricted character was used in the domain name.

 The following special characters are not allowed in

domain names:

= < > # \ *

EIMERR_CONN_INVAL (54) Connection type is not valid.

EIMERR_NOT_SECURE (32) The system is not configured to connect to a secure

port. Connection type of

EIM_CLIENT_AUTHENTICATION is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PROTECT_INVAL (22) The protect parameter in EimSimpleConnectInfo is not

valid.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_SSL_REQ (42) The system is configured to connect to a secure port.

EimSSLInfo is required.

EIMERR_URL_NODN (45) URL has no DN (required).

EIMERR_URL_NODOMAIN (46) URL has no domain (required).

EIMERR_URL_NOHOST (47) URL does not have a host.

EIMERR_URL_NOTLDAP (49) URL does not begin with ldap.

EIMERR_CREDS_MUST_BE_NULL (58)

The connectInfo parameter of the EIM API does not

have a NULL value for the creds field in the

EimConnectInfo structure.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTSUP Connection type is not supported.

EIMERR_CONN_NOTSUPP (12) Connection type is not supported.

EROFS LDAP connection is for read-only. Need to connect to master. A writeable connection can

be established by using the EimConnectToMaster API.

EIMERR_URL_READ_ONLY (50)

LDAP connection can be made only to a replica LDAP

server. Change the connection information and try the

request again.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example creates an EIM domain with the name of myEIMDomain. The

distinguished name for the domain after it is created will be: ″ibm-
eimDomainName=myEIMDomain,o=mycompany,c=us″.

eimCreateDomain

228 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

#include <eim.h>

#include <stdio.h>

#include <string.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[200];

 EimRC * err;

 char * ldapURL =

 "ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

 EimConnectInfo con;

 /* Set up connection information */

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=admin";

 con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 /* Create a new EIM domain */

 if (0 != (rc = eimCreateDomain(ldapURL,

 con,

 NULL,

 err)))

 printf("Create domain error = %d", rc);

 return 0;

}

eimCreateDomain

Chapter 11. EIM APIs 229

eimCreateHandle

Purpose

Allocates an EimHandle structure, which is used to identify the EIM connection and

to maintain per-connection information. The EimHandle structure is passed on

subsequent calls to other EIM operations.

Format

#include <eim.h>

int eimCreateHandle(EimHandle * eim,

 char * ldapURL,

 EimRC * eimrc)

Parameters

eim

(Output) The pointer to an EIM handle to return. This handle is input for other

EIM APIs.

ldapURL

A NULL parameter indicates the ldapURL information is retrieved from a RACF

profile. eimCreateHandle uses the LDAP host name and domain distinguished

name stored in the profile to create the ldapURL. The eimCreateHandle

retrieves the information from one of the following profiles in this order:

1. The LDAPBIND class profile associated with the caller’s user profile

2. The IRR.EIM.DEFAULTS profile in the LDAPBIND class

3. The system default profile, IRR.PROXY.DEFAULTS profile in the FACILITY

class

This URL has the following format:

ldap://host:port/dn

ldaps://host:port/dn

host:port

Name of the host on which the EIM domain controller is running. (The

port number is optional. If not specified, the default LDAP or LDAPS

port will be used.)

dn Distinguished name of the domain to change.

 Examples:

ldap://systemx:389/ibm-eimDomainName=myEimDomain,o=myCompany,c=us

ldaps://systemy:636/ibm-eimDomainName=thisEimDomain,o=myCompany,c=us

Note: In contrast with ldap, ldaps indicates that this host and port

combination uses SSL and TLS.

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

eimCreateHandle

230 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Related Information

See the following:

v “eimConnect” on page 215

v “eimConnectToMaster” on page 220

v “eimDestroyHandle” on page 239

v “eimGetAttribute” on page 261

v “eimSetAttribute” on page 383

Authorization

z/OS authorization

The calling application can be running in system key or supervisor state or

one of the following:

v The RACF user ID of the caller’s address space has READ authority to

the BPX.SERVER profile in the FACILITY class

v The current RACF user ID has READ authority to the

IRR.RGETINFO.EIM profile in the FACILITY class

The FACILITY class must be active and RACLISTed before unauthorized

(problem program state and keys) will be granted the authority to use this

SAF service.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EBADDATA eimrc is not valid.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_URL_NODN (45) URL has no DN (required).

EIMERR_URL_NODOMAIN (46) URL has no domain (required).

EIMERR_URL_NOHOST (47) URL does not have a host.

EIMERR_URL_NOTLDAP (49) URL does not begin with ldap.

eimCreateHandle

Chapter 11. EIM APIs 231

Return Value Meaning

EMVSSAFEXTRERR SAF/RACF EXTRACT error.

EIMERR_ZOS_USER_XTR (6002)

RACROUTE REQUEST=EXTRACT error retrieving

EIM configuration information from the caller’s USER

profile.

EIMERR_ZOS_XTR_EIM (6003) RACROUTE REQUEST=EXTRACT error retrieving

EIM information from a RACF profile.

EIMERR_ZOS_XTR_PROXY (6005)

RACROUTE REQUEST=EXTRACT error retrieving

PROXY information from a RACF profile.

EMVSSAF2ERR SAF/RACF error.

EIMERR_ZOS_XTR_DOMAINDN (6004)

EIM domain distinguished name is missing.

EIMERR_ZOS_XTR_LDAPHOST (6006)

PROXY LDAP host is missing.

EIMERR_ZOS_XTR_BINDDN (6007)

PROXY bind distinguished name is missing.

EIMERR_ZOS_XTR_BINDPW (6018)

PROXY bind password is missing.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOSYS EIM is not configured

EIMERR_NOTCONFIG (30) (Only z/OS returns this value.) EIM environment is not

configured. On z/OS, issue RACF commands to

correct the configuration error and then try the request

again.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example illustrates creating an EIM handle with an LDAP URL and

using information stored in a RACF profile.

#include <eim.h>

 .

 .

 .

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 EimHandle handle2;

 char * ldapURL =

 "ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

 /* Set up error structure. */

 memset(eimerr,0x00,200);

eimCreateHandle

232 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 /* Create a new eim handle using stored LDAP host and DomainDN in RACF profile */

 rc = eimCreateHandle(&handle, NULL, err);

 .

 .

 .

 /* Create a new eim handle using a specified URL */

 rc = eimCreateHandle(&handle2, ldapURL, err);

 .

 .

 .

eimCreateHandle

Chapter 11. EIM APIs 233

eimDeleteDomain

Purpose

Deletes the EIM domain information. If there are any registries or identifiers in the

domain, then it cannot be deleted.

Format

#include <eim.h>

int eimDeleteDomain(char * ldapURL,

 EimConnectInfo connectInfo,

 EimRC * eimrc)

Parameters

ldapURL

(Input) A uniform resource locator (URL) that contains the EIM host information.

This parameter is required. This URL has the following format:

ldap://host:port/dn

or

ldaps://host:port/dn

host:port

Name of the host on which the EIM domain controller is running. (The

port number is optional. If not specified, the default LDAP or LDAPS

port will be used.)

dn Distinguished name of the domain to delete.

 Examples:

ldap://systemx:389/ibm-eimDomainName=myEimDomain,o=myCompany,c=us

ldaps://systemy:636/ibm-eimDomainName=thisEimDomain,o=myCompany,c=us

Note: In contrast with ldap, ldaps indicates that this host and port combination

uses SSL and TLS.

connectInfo

(Input) Connect information. This parameter provides the information required to

bind to LDAP. If the system is configured to connect to a secure port,

EimSSLInfo is required.

 For the EIM_SIMPLE connect type, the creds field should contain the

EimSimpleConnectInfo structure with a binddn and password.

EimPasswordProtect determines the level of password protection on the LDAP

bind.

EIM_PROTECT_NO (0) The clear-text password is sent on the bind.

EIM_PROTECT_CRAM_MD5 (1)

The protected password is sent on the bind.

The server side must support cram-md5

protocol to send the protected password.

EIM_PROTECT_CRAM_MD5_OPTIONAL (2)

The protected password is sent on the bind if

the cram-md5 protocol is supported. Otherwise,

the clear-text password is sent.

eimDeleteDomain

234 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

For EIM_KERBEROS, the default logon credentials are used. The

kerberos_creds field must be NULL.

For EIM_CLIENT_AUTHENTICATION, the creds field is ignored. The ssl field

must point to a valid EimSSLInfo structure. The keyring field is required in the

EimSSLInfo structure. It can be the name of a System SSL key database file or

a RACF keyring name. The keyring_pw field is required when the keyring is the

name of a System SSL key database field. The certificateLabel field is

optional. If it is NULL the default certificate in the keyring is used.

The structure layouts follow:

 enum EimPasswordProtect {

 EIM_PROTECT_NO,

 EIM_PROTECT_CRAM_MD5,

 EIM_PROTECT_CRAM_MD5_OPTIONAL

 };

 enum EimConnectType {

 EIM_SIMPLE,

 EIM_KERBEROS,

 EIM_CLIENT_AUTHENTICATION

 };

 typedef struct EimSimpleConnectInfo

 {

 enum EimPasswordProtect protect;

 char * bindDn;

 char * bindPw;

 } EimSimpleConnectInfo;

 typedef struct EimSSLInfo

 {

 char * keyring;

 char * keyring_pw;

 char * certificateLabel;

 } EimSSLInfo;

 typedef struct EimConnectInfo

 {

 enum EimConnectType type;

 union {

 gss_cred_id_t * kerberos;

 EimSimpleConnectInfo simpleCreds;

 } creds;

 EimSSLInfo * ssl;

 } EimConnectInfo;

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimCreateDomain” on page 225

v “eimChangeDomain” on page 194

v “eimListDomains” on page 298

eimDeleteDomain

Chapter 11. EIM APIs 235

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

EBADNAME EIM domain not found or insufficient access to EIM data.

EIMERR_NODOMAIN (24) EIM domain not found or insufficient access to EIM

data.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_CONN_INVAL (54) Connection type is not valid.

EIMERR_NOT_SECURE (32) The system is not configured to connect to a secure

port. Connection type of

EIM_CLIENT_AUTHENTICATION is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PROTECT_INVAL (22) The protect parameter in EimSimpleConnectInfo is not

valid.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_SSL_REQ (42) The system is configured to connect to a secure port.

EimSSLInfo is required.

EIMERR_URL_NODN (45) URL has no DN (required).

EIMERR_URL_NODOMAIN (46) URL has no domain (required).

EIMERR_URL_NOHOST (47) URL does not have a host.

EIMERR_URL_NOTLDAP (49) URL does not begin with ldap.

EIMERR_CREDS_MUST_BE_NULL (58)

The connectInfo parameter of the EIM API does not

have a NULL value for the creds field in the

EimConnectInfo structure.

eimDeleteDomain

236 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Value Meaning

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTSAFE Not safe to delete domain.

EIMERR_DOMAIN_NOTEMPTY (15)

Cannot delete a domain when it has registries or

identifiers.

ENOTSUP Connection type is not supported.

EIMERR_CONN_NOTSUPP (12) Connection type is not supported.

EROFS LDAP connection is for read-only. Need to connect to master. A writeable connection can

be established by using the EimConnectToMaster API.

EIMERR_URL_READ_ONLY (50)

LDAP connection can be made only to a replica LDAP

server. Change the connection information and try the

request again.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example deletes the specified EIM domain information:

#include <eim.h>

#include <string.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[200];

 EimRC * err;

 char * ldapURL =

 "ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

 EimConnectInfo con;

 /* Set up connection information */

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=admin";

 con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 /* Delete this domain */

 if (0 != (rc = eimDeleteDomain(ldapURL,

 con,

eimDeleteDomain

Chapter 11. EIM APIs 237

err)))

 printf("Delete domain error = %d", rc);

 return 0;

}

eimDeleteDomain

238 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimDestroyHandle

Purpose

Frees resources associated with the EimHandle and closes connections to the EIM

domain controllers. This closes the EIM connection for this handle.

Format

#include <eim.h>

int eimDestroyHandle(EimHandle * eim,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns.

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimConnect” on page 215

v “eimConnectToMaster” on page 220

v “eimCreateHandle” on page 230

v “eimGetAttribute” on page 261

v “eimSetAttribute” on page 383

Authorization

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EBADDATA eimrc is not valid.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

eimDestroyHandle

Chapter 11. EIM APIs 239

Return Value Meaning

EINVAL Input parameter was not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EUNKNOWN Unexpected exception.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example illustrates destroying an EIM handle:

#include <eim.h>

 .

 .

 .

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle * handle;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 .

 .

 .

 /* Destroy the handle */

 rc = eimDestroyHandle(handle, err);

 .

 .

 .

eimDestroyHandle

240 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimErr2String

Purpose

Converts the EIM return code structure that an EIM function returns into a

NULL-terminated character string that describes the error.

Format

#include <eim.h>

 char * eimErr2String(EimRC * eimrc)

Parameters

eimrc

(Input) The structure in which to return error code information. For the format of

the structure, see “EimRC -- EIM return code parameter for C/C++” on page

164.

Authorization

z/OS authorization

None.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

address of error string Request was successful. (The caller is expected to free the error string.)

NULL Request was unsuccessful. The eimErr2String sets global errno. The errno can be set by

catopen, catgets, catclose, or one of the following values:

EBADDATA eimrc is not valid. No eimrc structure was provided or

the eimrc is not large enough to be an eimrc structure.

Example

The following example converts an EIM RC into an error message and prints it.

#include <eim.h>

#include <stdio.h>

 ...

 char eimerr[150];

 EimRC * err;

 char * message;

 ...

 /* Set up error structure. */

 memset(eimerr,0x00,150);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 150;

eimErr2String

Chapter 11. EIM APIs 241

/* Call an EIM API that returns an EimRC...*/

 /* Convert the error structure to a message */

 if (NULL == (message = eimErr2String(err)))

 printf("eimErr2String error = %s",strerror(errno));

 else

 {

 printf("EIM API Error Message: %s",message);

 free(message);

 }

 ...

eimErr2String

242 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimFormatPolicyFilter

Purpose

Takes unformatted user identity information and generates a policy filter value for

use with the eimAddPolicyFilter API.

Format

#include <eim.h>

int eimFormatPolicyFilter(EimUserIdentityInfo * userIdentityInfo,

 EimPolicyFilterSubsetInfo * subsetInfo,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

Parameters

userIdentityInfo

(Input) The user identity information from which to generate policy filter values.

This structure contains information about the user identity. For EIM_DER_CERT

(0) or EIM_BASE64_CERT (1) user identity type, the userIdentityInfo field must

contain an EimCertificate structure. For EIM_CERT_INFO (2) user identity type,

the userIdentityInfo field must contain an EimCertificateInfo structure.

 The structure layouts follow:

enum EimUserIdentityType {

 EIM_DER_CERT, /* Entire X.509 public key

 certificate in ASN.1 DER encoding,

 Public Key Cryptography

 Standard 6 (PKCS-6) or PKCS-7 format. */

 EIM_BASE64_CERT, /* Base 64 encoded version of the

 entire X.509 public key

 certificate in ASN.1 DER

 encoding, Public Key

 Cryptography Standard 6 (PKCS-6) or PKCS-7

 format. */

 EIM_CERT_INFO /* Components of the certificate. */

 };

 typedef struct EimCertificateInfo

 {

 char * issuerDN; /* The issuer DN. */

 char * subjectDN; /* The subject DN. */

 void char * publicKey; /* The public key info structure (may be NULL). */

 unsigned int publicKeyLen; /* Length of public key info structure (may be 0)*/

 } EimCertificateInfo;

 typedef struct EimCertificate

 {

 char * certData; /* The certificate data */

 unsigned int certLength; /* The length of the certificate

 data. */

 } EimCertificate;

 typedef struct EimUserIdentityInfo

 {

 enum EimUserIdentityType type;

 union {

 EimCertificateInfo certInfo;

 EimCertificate cert;

 } userIdentityInfo;

 } EimUserIdentityInfo;

subsetInfo

(Input) The information used to subset the policy filter values that are formatted.

eimFormatPolicyFilter

Chapter 11. EIM APIs 243

If NULL is specified, then all possible return values are returned for the

specified user identity. If this parameter is not NULL, then the results returned

are based on the subset information. For EIM_BASE64_CERT (0),

EIM_DER_CERT (1), or EIM_CERT_INFO (2) user identity type, the subset

field must contain an EimCertPolicyFilterSubsetInfo structure.

 The structure layouts follow:

typedef struct EimCertPolicyFilterSubsetInfo

{

 char * subjectFilter; /* Subject filter value. */

 char * issuerFilter; /* Issuer filter value. */

} EimCertPolicyFilterSubsetInfo;

typedef struct EimPolicyFilterSubsetInfo

{

 union {

 EimCertPolicyFilterSubsetInfo certFilter;

 } subset;

} EimPolicyFilterSubsetInfo;

lengthOfListData

(Input) The number of bytes provided by the caller for the listData parameter. If

the value of bytesReturned is less than bytesAvailable in the returned listData

structure, you can use this number as the bytesAvailable size, update the

lengthOfListData parameter, and reissue the API to retrieve the data. The

minimum size required is 20 bytes.

listData

(Output) A pointer to the EimList structure, which contains information about the

returned data. The data takes the form of a linked list of EimPolicyFilterValue

structures.

 The EimList structure has the following layout:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

The EimPolicyFilterValue structure has the following layout:

typedef struct EimPolicyFilterValue

{

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData filterValue; /* Generated policy filter value. */

} EimPolicyFilterValue;

The EimListData structure has the following layout:

typedef struct EimListData

{

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

eimFormatPolicyFilter

244 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

the parent structure; that is, the

 structure containing this

 structure. */

} EimListData;

eimrc

(Input) The structure in which to return error code information. For the format of

the structure, see “EimRC -- EIM return code parameter for C/C++” on page

164.

Related Information

See the following:

v “eimAddPolicyFilter” on page 187

v “eimRemovePolicyFilter” on page 371

v “eimListPolicyFilters” on page 312

Authorization

No authorization is required.

Return Values

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EBADDATA eimrc is not valid.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_ASSOC_TYPE_INVAL (4)

Association type is not valid.

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least

20 bytes in length.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

EIMERR_USER_IDENTITY_TYPE_INVAL (63)

User identity type is not valid.

EIMERR_CERTIFICATE_INVAL (67)

Certificate data is not valid.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

EUNKNOWN Unexpected exception.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

eimFormatPolicyFilter

Chapter 11. EIM APIs 245

Example

The following example generates certificate policy filter values.

#include <eim.h>

#include <stdio.h>

#include <stddef.h>

#include <string.h>

#include <sys/stat.h>

#include <errno.h>

void printListResults(EimList * list);

void printListData(char * fieldName,

 void * entry,

 int offset);

int main (int argc, char *argv[])

{

 int rc;

 char eimerr[250];

 EimRC * err;

 EimHandle * handle;

 EimUserIdentityInfo idInfo;

 char listData[4000];

 EimList * list = (EimList *)listData;

 FILE * certFile;

 char * certBuf;

 int certLen;

 struct stat info;

 /* If no certificate file specified as parameter, */

 /* print usage message and exit */

 if (argc < 2) {

 printf("Usage: %s <cert-file-name>\n", argv[0]);

 return 1;

 } else {

 /* Get certificate file statistics. quit if fails */

 if (stat(argv[1], &info) != 0) {

 printf("stat failed for cert file=[%s]\n", argv[1]);

 return 1;

 }

 /* Make sure certificate file is in fact a file */

 if (S_ISREG(info.st_mode) == 0) {

 printf("cert file=[%s] is not a regular file\n", argv[1]);

 return 1;

 }

 }

 /* Make sure the certificate file contains data */

 if (info.st_size == 0) {

 printf("cert file %s contains no data\n", argv[1]);

 return 1;

 }

 /* Obtain storage to contain certificate data */

 certBuf = (char *)malloc(info.st_size);

 if (certBuf == NULL) {

 printf("Failed to get %d bytes data for cert buffer\n"

 , info.st_size);

 return 1;

 }

 /* Open the certificate file, quit if fails*/

 certFile = fopen(argv[1], "r");

 if (certFile == NULL) {

 printf("Unable to open %s: %s\n",

eimFormatPolicyFilter

246 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

argv[1], strerror(errno));

 free(certBuf);

 return 1;

 }

 /* Read the certificate file, quit if fails*/

 certLen = fread(certBuf, 1, info.st_size, certFile);

 if (certLen == 0) {

 printf("Unable to read %s: %s\n",

 argv[1], strerror(errno));

 fclose(certFile);

 free(certBuf);

 return 1;

 }

 fclose(certFile);

 /* Set up error structure. */

 memset(eimerr,0x00,250);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 250;

 /* Get user identity information. */

 idInfo.type = EIM_DER_CERT;

 idInfo.userIdentityInfo.cert.certLength = certLen;

 idInfo.userIdentityInfo.cert.certData = certBuf;

 /* Format EIM Policy Filter */

 /* This call will return all possible */

 /* certificate policy filter values. */

 if (0 != (rc = eimFormatPolicyFilter(&idInfo,

 NULL,

 4000,

 list,

 err)))

 {

 printf("Format Policy Filter failed; return code = %d", rc);

 free(certBuf);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 free(certBuf);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimPolicyFilterValue * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimPolicyFilterValue *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Print out results */

eimFormatPolicyFilter

Chapter 11. EIM APIs 247

printListData("Policy Filter Value",

 entry,

 offsetof(EimPolicyFilterValue, filterValue));

 /* advance to next entry */

 entry = (EimPolicyFilterValue *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

eimFormatPolicyFilter

248 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimFormatUserIdentity

Purpose

Takes unformatted user identity information and formats it for use with other EIM

functions.

Format

#include <eim.h>

int eimFormatUserIdentity(

 enum EimUserIdentityFormatType formatType,

 EimUserIdentityInfo * userIdentityInfo,

 unsigned int lengthOfUserIdentity,

 EimUserIdentity * userIdentity,

 EimRC * eimrc)

Parameters

formatType

(Input) How to format the user identity. Choices for input are:

EIM_REGISTRY_USER_NAME (0)

Indicates the user identity information be used to form a registry user name

that may then be used as a registryUserName on other EIM APIs. For

certificates or certificate information, the registry user name is formed from

the subject distinguished name (SDN), issuer distinguished name (IDN),

and a hash of the public key information. The registry user name takes this

format:

<SDN>subject-DN</SDN><IDN>issuer-DN</IDN><HASH_VAL>hash-value</HASH_VAL>

userIdentityInfo

(Input) The user identity information to format. For EIM_DER_CERT (0) or

EIM_BASE64_CERT (1) user identity type, the userIdentityInfo field must

contain an EimCertificate structure. For EIM_CERT_INFO (2) user identity type,

the userIdentityInfo field must contain an EimCertificateInfo structure.

 The structure layouts follow:

enum EimUserIdentityType {

 EIM_DER_CERT, /* Entire X.509 public key

 certificate in ASN.1 DER encoding,

 Public Key Cryptography

 Standard 6 (PKCS-6) or PKCS-7 format. */

 EIM_BASE64_CERT, /* Base 64 encoded version of the

 entire X.509 public key

 certificate in ASN.1 DER

 encoding, Public Key

 Cryptography Standard 6 (PKCS-6) or PKCS-7

 format.

 EIM_CERT_INFO /* Components of the certificate. */

 };

 typedef struct EimCertificateInfo

 {

 char * issuerDN; /* The issuer DN. */

 char * subjectDN; /* The subject DN. */

 void * publicKey; /* The public key info structure. */

 unsigned int publicKeyLen; /* Length of public key info structure.*/

} EimCertificateInfo;

typedef struct EimCertificate

 {

 unsigned int certLength; /* The length of the certificate

 data. */

eimFormatUserIdentity

Chapter 11. EIM APIs 249

char * certData; /* The certificate data */

 } EimCertificate;

typedef struct EimUserIdentityInfo

{

 enum EimUserIdentityType type;

 union {

 EimCertificateInfo certInfo;

 EimCertificate cert;

 } userIdentityInfo;

} EimUserIdentityInfo;

If the userIdentityInfo field contains an EimCertificateInfo structure, the issuerDN

and subjectDN fields must contain valid DN strings (for example CN=John D.

Smith,OU=Sales,O=IBM,L=Rochester,ST=Min,C=US). The PublicKey field must

contain the full DER encoded public key information structure, and the

publicKeyLen field must contain the length of that structure.

For EIM_DER_CERT (0) certifications, certData must point to a buffer

containing the DER encoded cert and the certLength field must contain the

length of the certificate. The length specified in certLength will be verified

against the length encoded in the certificate.

For EIM_BASE64_CERT (1) certificates, certData must point to a buffer

containing the base64 encoded certificate with or without the BEGIN - END tags

removed and certLength must contain the length of certData.

lengthOfUserIdentity

(Input) The number of bytes provided by the caller for the formatted user

identify. The size required is calculated as: the length of the subject DN, plus

the length of the issuer DN, plus 40 bytes for the hash value, plus 43 bytes for

the SDN, IDN and HASH_VAL tags, plus 16 bytes for the other elements of the

EimUserIdentity structure. The minimum size is 16 bytes.

userIdentity

(Output) A pointer to the data to be returned. The API will return as much data

as the space allows.

 EimUserIdentity has the following structure:

 typedef struct EimUserIdentity

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API. */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API. */

 EimListData userIdentity; /* User identity */

 } EimUserIdentity;

EimListData has the following structure:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

eimrc

(Input) The structure in which to return error code information. If the return

eimFormatUserIdentity

250 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

value is not 0, eimrc is set with additional information. This parameter may be

NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimAddAssociation” on page 174

Authorization

No authorization is required.

Return Values

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EBADDATA eimrc is not valid.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

EIMERR_USER_IDENTITY_TYPE_I NVAL (63)

User identity type is not valid.

EIMERR_USER_IDENTITY_SIZE (64)

User identity length is not valid.

EIMERR_USER_IDENTITY_FORMAT_TYPE_INVAL (65)

User identity format type is not valid.

EIMERR_CERTIFICATE_INVAL (67)

Certificate data is not valid.

EMVSERR An MVS environment or internal error has occurred.

EIMERR_ZOS_DATA_CONVERSION (6011)

(only z/OS returns this value.) Error occurred when

converting data between code pages.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

EUNKNOWN Unexpected exception.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example formats the user identity and adds an association.

eimFormatUserIdentity

Chapter 11. EIM APIs 251

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/stat.h>

#include <errno.h>

int main (int argc, char *argv[])

{

 int rc;

 char eimerr[250];

 EimRC * err;

 EimHandle * handle;

 EimIdentifierInfo id;

 EimUserIdentityInfo idInfo;

 char rtnData[4000];

 EimUserIdentity * fmtData = (EimUserIdentity *)rtnData;

 FILE * certFile;

 char * certBuf;

 int certLen;

 struct stat info;

 /* If no certificate file specified as parameter, */

 /* print usage message and exit */

 if (argc < 2) {

 printf("Usage: %s <cert-file-name>\n", argv[0]);

 return 1;

 } else {

 /* Get certificate file statistics. quit if fails */

 if (stat(argv[1], &info) != 0) {

 printf("stat failed for cert file=[%s]\n", argv[1]);

 return 1;

 }

 /* Make sure certificate file is in fact a file */

 if (S_ISREG(info.st_mode) == 0) {

 printf("cert file=[%s] is not a regular file\n", argv[1]);

 return 1;

 }

 }

 /* Make sure the certificate file contains data */

 if (info.st_size == 0) {

 printf("cert file %s contains no data\n", argv[1]);

 return 1;

 }

 /* Obtain storage to contain certificate data */

 certBuf = (char *)malloc(info.st_size);

 if (certBuf == NULL) {

 printf("Failed to get %d bytes data for cert buffer\n"

 , info.st_size);

 return 1;

 }

 /* Open the certificate file, quit if fails*/

 certFile = fopen(argv[1], "r");

 if (certFile == NULL) {

 printf("Unable to open %s: %s\n",

 argv[1], strerror(errno));

 free(certBuf);

 return 1;

 }

 /* Read the certificate file, quit if fails*/

 certLen = fread(certBuf, 1, info.st_size, certFile);

 if (certLen == 0) {

eimFormatUserIdentity

252 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

printf("Unable to read %s: %s\n",

 argv[1], strerror(errno));

 fclose(certFile);

 free(certBuf);

 return 1;

 }

 fclose(certFile);

 /* Set up error structure. */

 memset(eimerr,0x00,250);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 250;

 /* Get user identity information. */

 idInfo.type = EIM_DER_CERT;

 idInfo.userIdentityInfo.cert.certLength = certLen;

 idInfo.userIdentityInfo.cert.certData = certBuf;

 /* Format user identity */

 if (0 != (rc = eimFormatUserIdentity(EIM_REGISTRY_USER_NAME,

 &idInfo,

 4000,

 fmtData,

 err)))

 {

 printf("Format user identity error = %d\n", rc);

 free(certBuf);

 return -1;

 } else {

 printf("Formated user identity: %s\n"

 ,(char *)fmtData + fmtData->userIdentity.disp);

 }

 free(certBuf);

 return 0;

}

eimFormatUserIdentity

Chapter 11. EIM APIs 253

eimGetAssociatedIdentifiers

Purpose

Returns a list of the identifiers. Given a registry name and registry user name within

that user registry, this API returns the EIM identifier associated with it. It is possible

that more than one person is associated with a specific user name. This occurs

when users share identities (and possibly passwords) within a single instance of a

user registry. While this practice is not condoned, it does happen. This creates an

ambiguous result.

Format

#include <eim.h>

int eimGetAssociatedIdentifiers(EimHandle * eim,

 enum EimAssociationType associationType,

 char * registryName,

 char * registryUserName,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

associationType

(Input) The type of association to retrieve. Valid values are:

EIM_ALL_ASSOC (0)

Retrieve all associations.

EIM_TARGET (1)

Retrieve target associations.

EIM_SOURCE (2)

Retrieve source associations.

EIM_SOURCE_AND_TARGET (3)

Retrieve source and target associations.

EIM_ADMIN (4)

Retrieve administrative associations.

registryName

(Input) The registry name for the lookup. If this string has a null value, the API

uses the system default local registry name from the instorage copy of the

registry name. Registry names are case-independent (meaning, not

case-sensitive).

 The following special characters are not allowed in registry names:

, = + < > # ; \ *

registryUserName

(Input) The registry user name for the lookup.

lengthOfListData

(Input) The number of bytes provided by the caller for the listData parameter. If

the value of bytesReturned is less than bytesAvailable in the returned listData

eimGetAssociatedIdentifiers

254 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

structure, you can use this number as the bytesAvailable size, update the

lengthOfListData parameter, and reissue the API to retrieve the data. The

minimum size required is 20 bytes.

listData

(Output) A pointer to the data to return. The EimList structure contains

information about the returned data. The data returned is a linked list of

EimIdentifier structures. The firstEntry is used to get to the first EimIdentifier

structure in the linked list. The number of complete EimIdentifier structures is

returned in entriesReturned. The bytesReturned variable has the number of

bytes the API used for the returned entries. If the number of entries returned is

less than the number of entries available, the returned data contains as many

complete EimIdentifier structures as will fit. It can also contain a partial

EimIdentifier structure.The EimList structure follows:

typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

The EimIdentifier structure follows:

 typedef struct EimIdentifier

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData uniquename; /* Unique name */

 EimListData description; /* Description */

 EimListData entryUUID; /* UUID */

 EimSubList names; /* EimIdentifierName sublist */

 EimSubList additionalInfo; /* EimAddlInfo sublist */

 } EimIdentifier;

Identifiers might have defined several name attributes as well as several

additional information attributes. In the EimIdentity structure, the name

EimSubList gives addressability to a linked list of EimIdentifierName structures:

 typedef struct EimIdentifierName

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData name; /* Name */

 } EimIdentifierName;

The additionalInfo EimSubList gives addressability to a linked list of EimAddlInfo

structures. The EimAddlInfo structure follows:

 typedef struct EimAddlInfo

 {

 unsigned int nextEntry; /* Displacement to next entry. This

eimGetAssociatedIdentifiers

Chapter 11. EIM APIs 255

byte offset is relative to the

 start of this structure */

 EimListData addlInfo; /* Additional info */

 } EimAddlInfo;

The EimSubList structure follows:

 typedef struct EimSubList

 {

 unsigned int listNum; /* Number of entries in the list */

 unsigned int disp; /* Displacement to sublist. This

 byte offset is relative to the

 start of the parent structure, i.e.

 the structure containing this

 structure. */

 } EimSubList;

The EimListData structure follows:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure, i.e. the

 structure containing this

 structure. */

 } EimListData

eimrc

(Input/output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimAddIdentifier” on page 179

v “eimChangeIdentifier” on page 199

v “eimListIdentifiers” on page 305

v “eimRemoveIdentifier” on page 364

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

v EIM registries administrator

v EIM identifiers administrator

v EIM mapping-lookup authority

v EIM registry X administrator

The returned list contains only the information that the user has authority to

access.

z/OS authorization

The calling application can be running in system key or supervisor state or

one of the following:

eimGetAssociatedIdentifiers

256 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

v The RACF user ID of the caller’s address space has READ authority to

the BPX.SERVER profile in the FACILITY class

v The current RACF user ID has READ authority to the

IRR.RGETINFO.EIM profile in the FACILITY class

The FACILITY class must be active and RACLISTed before unauthorized

(problem program state and keys) will be granted the authority to use this

SAF service.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EBADDATA eimrc is not valid.

EBADNAME Registry not found or insufficient access to EIM data.

EIMERR_NOREG (28) EIM registry not found or insufficient access to EIM

data.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_ASSOC_TYPE_INVAL (4)

Association type is not valid.

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least

20 bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

eimGetAssociatedIdentifiers

Chapter 11. EIM APIs 257

Return Value Meaning

ENOSYS EIM is not configured.

EIMERR_NOTCONFIG (30) (Only z/OS returns this value.) EIM environment is not

configured. On z/OS, issue RACF commands to

correct the configuration error and then try the request

again.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNEXP_OBJ_VIOLATION (56)

Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example lists all of the identiifers associated with the registry,

MyRegistry, and a user of carolb.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printSubListData(char * fieldName, void * entry, int offset);

void printListData(char * fieldName, void * entry, int offset);

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 EimConnectInfo con;

 char * ldapHost =

 "ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

 char listData[1000];

 EimList * list = (EimList *) listData;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=admin";

 con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* Create handle with specified LDAP URL */

 if (0 != (rc = eimCreateHandle(&handle,

 ldapHost,

 err))) {

 printf("Create handle error = %d\n", rc);

 return -1;

 }

 /* Connect with specified credentials */

 if (0 != (rc = eimConnect(&handle,

 con,

eimGetAssociatedIdentifiers

258 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

err))) {

 printf("Connect error = %d\n", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* Get associated identifiers */

 if (0 != (rc = eimGetAssociatedIdentifiers(&handle,

 EIM_ALL_ASSOC,

 "MyRegistry",

 "carolb",

 1000,

 list,

 err)))

 {

 printf("Get Associated Identifers error = %d\n", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 /* Destroy the handle */

 rc = eimDestroyHandle(&handle, err);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimIdentifier * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimIdentifier *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Print out results */

 printListData("Unique name",

 entry,

 offsetof(EimIdentifier, uniquename));

 printListData("description",

 entry,

 offsetof(EimIdentifier, description));

 printListData("entryUUID",

 entry,

 offsetof(EimIdentifier, entryUUID));

 printSubListData("Names",

 entry,

 offsetof(EimIdentifier, names));

 printSubListData("Additional Info",

 entry,

 offsetof(EimIdentifier, additionalInfo));

 /* advance to next entry */

 entry = (EimIdentifier *)((char *)entry + entry->nextEntry);

 }

eimGetAssociatedIdentifiers

Chapter 11. EIM APIs 259

printf("\n");

}

void printSubListData(char * fieldName, void * entry, int offset)

{

 int i;

 EimSubList * subList;

 EimAddlInfo * subentry;

 /* Address the EimSubList object */

 subList = (EimSubList *)((char *)entry + offset);

 if (subList->listNum > 0)

 {

 subentry = (EimAddlInfo *)((char *)entry + subList->disp);

 for (i = 0; i < subList->listNum; i++)

 {

 /* Print out results */

 printListData(fieldName,

 subentry,

 offsetof(EimAddlInfo, addlInfo));

 /* advance to next entry */

 subentry = (EimAddlInfo *)((char *)subentry +

 subentry->nextEntry);

 }

 }

}

void printListData(char * fieldName, void * entry, int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

eimGetAssociatedIdentifiers

260 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimGetAttribute

Purpose

Gets attributes for this EIM handle. If the host system for the EIM domain is a

replica LDAP server, the handle master attributes contain the host system

information for the master LDAP server. If the host system for the EIM domain is a

master (meaning it is writable) LDAP server, the HOST, PORT and SECPORT

handle attributes and master handle attributes have the same values.

Format

#include <eim.h>

int eimGetAttribute(EimHandle * eim,

 enum EimHandleAttr attrName,

 unsigned int lengthOfEimAttribute,

 EimAttribute * attribute,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns.

attrName

(Input) The name of the attribute to retrieve. The following values are valid:

EIM_HANDLE_CCSID (0) (z/OS does not support this value.) This is the

coded character set identifier (CCSID) of

character data that the caller of EIM APIs

passes with the specified EimHandle. The

returned field is a 4-byte integer.

EIM_HANDLE_DOMAIN (1) The EIM domain name.

EIM_HANDLE_HOST (2) The host system for the EIM domain.

EIM_HANDLE_PORT (3) The port for the EIM connection. The returned

field is a 4-byte integer.

EIM_HANDLE_SECPORT (4) Security type for this connection. The returned

field is a 4-byte integer. Possible values are:

0 Non-SSL

1 Port uses SSL

EIM_HANDLE_MASTER_HOST (5)

If the EIM_HANDLE_HOST is a replica LDAP

server, this value indicates the master LDAP

server.

EIM_HANDLE_MASTER_PORT (6)

If the EIM_HANDLE_HOST is a replica LDAP

server, this value indicates the port for the

master LDAP server. The returned field is a

4-byte integer.

EIM_HANDLE_MASTER_SECPORT (7)

If the EIM_HANDLE_HOST is a replica LDAP

server, this value indicates the security type for

eimGetAttribute

Chapter 11. EIM APIs 261

the master LDAP server. The returned field is a

4-byte integer. Possible values are:

0 Non-SSL

1 Port uses SSL

lengthOfEimAttribute

(Input) The number of bytes the caller provides for the attribute information. The

minimum size required is 16 bytes.

attribute

(Output) A pointer to the data to return. The EimAttribute structure contains

information about the returned data. The API returns as much data as space

has been provided. The EimAttribute structure follows:

 typedef struct EimAttribute

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable;/* Number of bytes of available data

 that could have been returned by

 the API */

 EimListData attribute; /* handle attribute */

 } EimAttribute;

The EimListData structure follows:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure, i.e. the

 structure containing this

 structure. */

 } EimListData;

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimConnect” on page 215

v “eimConnectToMaster” on page 220

v “eimCreateHandle” on page 230

v “eimDestroyHandle” on page 239

v “eimSetAttribute” on page 383

Authorization

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

eimGetAttribute

262 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_ATTR_INVAL (5) Attribute name is not valid.

EIMERR_ATTRIB_SIZE (53) Length of EimAttribute is not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

ENOTSUP Attribute is not supported.

EIMERR_ATTR_NOTSUPP (6) Attribute not supported.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example gets the distiguished name (DN) of the domain for the given

EIM handle:

#include <eim.h>

#include <string.h>

#include <stdio.h>

 .

 .

 .

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 char * data;

eimGetAttribute

Chapter 11. EIM APIs 263

char * listData[1000];

 EimAttribute * list = (EimAttribute *) listData;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 .

 .

 .

 /* Get EIM domain name */

 if (0 != (rc = eimGetAttribute(&handle,

 EIM_HANDLE_DOMAIN,

 1000,

 list,

 err))) {

 char * errorString;

 if (NULL != (errorString = eimErr2String(err))) {

 printf("Get Attribute error = %d - %s\n", rc, errorString);

 free(errorString);

 } else {

 printf("Get Attribute error = %d - %s\n", rc, strerror(rc));

 }

 } else {

 data = (char *)list + list->attribute.disp;

 printf("Domain name = %s.\n", data);

 }

 .

 .

 .

eimGetAttribute

264 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimGetRegistryNameFromAlias

Purpose

Returns a list of registry names that match the search criteria that aliasType and

aliasValue specify.

Format

#include <eim.h>

int eimGetRegistryNameFromAlias(EimHandle * eim,

 char * aliasType,

 char * aliasValue,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

aliasType

(Input) The type of alias for which to search. For a list of predefined alias types,

see page 119.

aliasValue

(Input) The value of the alias to use for this search.

lengthOfListData

(Input) The number of bytes provided by the caller for the listData parameter. If

the value of bytesReturned is less than bytesAvailable in the returned listData

structure, you can use this number as the bytesAvailable size, update the

lengthOfListData parameter, and reissue the API to retrieve the data. The

minimum size required is 20 bytes.

listData

(Output) A pointer to the data to return. The EimList structure contains

information about the returned data. The data returned is a linked list of

EimRegistryName structures. The firstEntry is used to get to the first

EimRegistryName structure in the linked list. The number of completed

EimRegistryName structures is returned in entriesReturned. The bytesReturned

variable has the number of bytes the API used for the returned entries. If the

number of entries returned is less than the number of entries available, the

returned data contains as many complete EimRegistryName structures as will

fit. It can also contain a partial EimRegistryName structure.The EimList structure

follows:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

eimGetRegistryNameFromAlias

Chapter 11. EIM APIs 265

unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

The EimRegistryName structure follows:

 typedef struct EimRegistryName

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData name; /* Name */

 } EimRegistryName;

The EimListData structure follows:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure, i.e. the

 structure containing this

 structure. */

 } EimListData;

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimChangeRegistryAlias” on page 207

v “eimListRegistryAliases” on page 325

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

v EIM registries administrator

v EIM identifiers administrator

v EIM registry X administrator

v EIM mapping lookup

The returned list contains only the information that the user has authority to

access, meaning it could be empty.

z/OS authorization

No special authorization is needed.

eimGetRegistryNameFromAlias

266 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EBADDATA eimrc is not valid.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least

20 bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example gets the registry name from the specified alias:

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printListData(char * fieldName, void * entry, int offset);

int main(int argc, char *argv[])

{

 int rc;

eimGetRegistryNameFromAlias

Chapter 11. EIM APIs 267

char eimerr[200];

 EimRC * err;

 EimHandle handle;

 EimConnectInfo con;

 char * ldapHost =

 "ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

 char listData[1000];

 EimList * list = (EimList *) listData;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=admin";

 con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* Create handle with specified LDAP URL */

 if (0 != (rc = eimCreateHandle(&handle,

 ldapHost,

 err))) {

 printf("Create handle error = %d\n", rc);

 return -1;

 }

 /* Connect with specified credentials */

 if (0 != (rc = eimConnect(&handle,

 con,

 err))) {

 printf("Connect error = %d\n", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* Get all aliases for the registry */

 if (0 != (rc = eimGetRegistryNameFromAlias(&handle,

 EIM_ALIASTYPE_DNS,

 "Clueless",

 1000,

 list,

 err)))

 {

 printf("List registry aliases error = %d\n", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 rc = eimDestroyHandle(&handle, err);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimRegistryName * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

eimGetRegistryNameFromAlias

268 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimRegistryName *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 /* Print out results */

 printListData("Registry Name",

 entry,

 offsetof(EimRegistryName, name));

 /* advance to next entry */

 entry = (EimRegistryName *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printListData(char * fieldName, void * entry, int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

eimGetRegistryNameFromAlias

Chapter 11. EIM APIs 269

eimGetTargetFromIdentifier

Purpose

Gets the target identity or identities for the specified registry that are associated

with the specified EIM identifier.

Format

#include <eim.h>

int eimGetTargetFromIdentifier(EimHandle * eim,

 EimIdentifierInfo * idName,

 char * targetRegistryName,

 char * additionalInformation,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

idName

(Input) A structure that contains the name of the identifier for this lookup

operation. The layout of the EimIdentifierInfo structure follows:

 enum EimIdType {

 EIM_UNIQUE_NAME,

 EIM_ENTRY_UUID,

 EIM_NAME

 };

 typedef struct EimIdentifierInfo

 {

 union {

 char * uniqueName;

 char * entryUUID;

 char * name;

 } id;

 enum EimIdType idtype;

 } EimIdentifierInfo;

idtype

The idtype in the EimIdentifierInfo structure indicates which identifier name

has been provided. EIM_UNIQUE_NAME and EIM_ENTRY_UUID find at

most one matching identifier. EIM_NAME results in an error if your EIM

domain has more than one identifier containing the same name.

targetRegistryName

(Input) The target registry for this lookup operation. A null value for the string

causes the service to use the system default local registry name from the

instorage copy of the registry name.

additionalInfo

(Input) Additional information that is selection criteria for this operation. This can

be a NULL string (for example, ″″). This filter data can contain the wildcard

character, an asterisk (*). This field can be repeated and can contain more than

one value.

eimGetTargetFromIdentifier

270 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

lengthOfListData

(Input) The number of bytes provided by the caller for the listData parameter. If

the value of bytesReturned is less than bytesAvailable in the returned listData

structure, you can use this number as the bytesAvailable size, update the

lengthOfListData parameter, and reissue the API to retrieve the data. The

minimum size required is 20 bytes.

listData

(Output) A pointer to the data to return. The EimList structure contains

information about the returned data. The data returned is a linked list of

EimTargetIdentity structures. The firstEntry is used to get to the first

EimTargetIdentity structure in the linked list. The number of completed

EimTargetIdentity structures is returned in entriesReturned. The bytesReturned

variable has the number of bytes the API used for the returned entries. If the

number of entries returned is less than the number of entries available, the

returned data contains as many complete EimTargetIdentity structures as will fit.

It can also contain a partial EimTargetIdentity structure.The EimList structure

follows:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API. */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API. */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API. */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API. */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

The EimTargetIdentity structure follows:

 typedef struct EimTargetIdentity

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure. */

 EimListData userName; /* User name */

 } EimTargetIdentity;

The EimListData structure follows:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure, i.e. the

 structure containing this

 structure. */

 } EimListData;

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

eimGetTargetFromIdentifier

Chapter 11. EIM APIs 271

Related Information

See the following:

v “eimGetTargetFromSource” on page 276

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

v EIM registries administrator

v EIM identifiers administrator

v EIM registry X administrator

v EIM mapping-lookup

The list returned contains only the information that the user has authority to

access.

z/OS authorization

The calling application can be running in system key or supervisor state or

one of the following:

v The RACF user ID of the caller’s address space has READ authority to

the BPX.SERVER profile in the FACILITY class

v The current RACF user ID has READ authority to the

IRR.RGETINFO.EIM profile in the FACILITY class

The FACILITY class must be active and RACLISTed before unauthorized

(problem program state and keys) will be granted the authority to use this

SAF service.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EBADDATA eimrc is not valid.

EBADNAME Registry or identifier not found or insufficient access to EIM data.

EIMERR_IDNAME_AMBIGUOUS (20)

More than one EIM identifier was found that matches

the requested Identifier name.

EIMERR_NOIDENTIFIER (25) EIM identifier not found or insufficient access to EIM

data.

EIMERR_NOREG (28) EIM registry not found or insufficient access to EIM

data.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

eimGetTargetFromIdentifier

272 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Value Meaning

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least

20 bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_IDNAME_TYPE_INVAL (52)

The EimIdType value is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

EMVSERR An MVS environment or internal error has occurred.

EIMERR_ZOS_DATA_CONVERSION (6011)

Error occurred when converting data between code

pages.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOSYS EIM is not configured

EIMERR_NOTCONFIG (30) (Only z/OS returns this value.) EIM environment is not

configured. On z/OS, issue RACF commands to

correct the configuration error and then try the request

again.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use the eimConnect API or

the eimConnectToMaster API and try the request

again.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNEXP_OBJ_VIOLATION (56)

Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example gets the list of users in the target registry, MyRegistry, that is

associated with the specified identifier:

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

eimGetTargetFromIdentifier

Chapter 11. EIM APIs 273

void printListData(char * fieldName, void * entry, int offset);

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 EimConnectInfo con;

 char * ldapHost =

 "ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

 char listData[4000];

 EimList * list = (EimList *) listData;

 EimIdentifierInfo x;

 /* Set up error structure. */

 Memset(eimerr, 0x00, 200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=admin";

 con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* Create handle with specified LDAP URL */

 if (0 != (rc = eimCreateHandle(&handle,

 ldapHost,

 err))) {

 printf("Create handle error = %d\n", rc);

 return -1;

 }

 /* Connect with specified credentials */

 if (0 != (rc = eimConnect(&handle,

 con,

 err))) {

 printf("Connect error = %d\n", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* Set up identifier information */

 x.idtype = EIM_UNIQUE_NAME;

 x.id.uniqueName = "mjones";

 if (0 != (rc = eimGetTargetFromIdentifier(&handle,

 &x,

 "MyRegistry",

 NULL,

 4000,

 list,

 err)))

 {

 printf("Get Target from identifier error = %d\n", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 printListResults(list);

 /* Destroy the handle */

 rc = eimDestroyHandle(&handle, err);

 return 0;

}

eimGetTargetFromIdentifier

274 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

void printListResults(EimList * list)

{

 int i;

 EimTargetIdentity * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimTargetIdentity *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Print out results */

 printListData("target user",

 entry,

 offsetof(EimTargetIdentity, userName));

 /* advance to next entry */

 entry = (EimTargetIdentity *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printListData(char * fieldName, void * entry, int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

eimGetTargetFromIdentifier

Chapter 11. EIM APIs 275

eimGetTargetFromSource

Purpose

Gets the target identity or identities associated with the source identity (as defined

by source registry name and source registry user). This is known as a mapping

lookup operation -- from the known source information this API returns the user for

this target registry.

The mapping lookup operation is done in the following order:

1. Check if both the source and target registries support mapping lookup

operations. If not, no data is returned.

2. Specific source association to target association:

v Check for source associations to EIM identifier(s) using the specified source

registry user name and source registry. If none is found, proceeds to step 3.

v Check for target associations to the EIM identifier(s) using the specified target

registry. If none are found, proceeds to step 3.

v If additional information is specified, check if any of the target identities have

the same additional information. If not, proceeds to step 3.

v Return the target identity(ies) for the specified target registry that have the

same additional information that is specified.

3. Check if the domain supports policy associations. If not, no data is returned.

4. Check if the target registry supports policy associations. If not, no data is

returned.

5. Certificate filter policy associations:

v Check if the source registry is an X.509 registry. If not, proceeds to step 6.

v Check if there is a certificate policy filter value that matches the source

identity. If not, proceeds to step 6.

v Check for certificate filter policy associations for the certificate filter policy

value to the target registry. If none are found, proceeds to step 6.

v If additional information is specified, check if any of the target identities have

the same additional information. If not, proceeds to step 6.

v Return the target identity(ies) for the specified target registry that have the

same additional information that is specified.

6. Default registry policy associations:

v Check for default registry policy associations for the source registry to the

target registry. If none are found, proceeds to step 7.

v If additional information is specified, check if any of the target identities have

the same additional information. If not, proceeds to step 7.

v Return the target identity(ies) for the specified target registry that have the

same additional information that is specified.

7. Default domain policy associations:

v Check for default domain policy associations to the target registry. If none are

found, no data is returned.

v If additional information is specified, check if any of the target identities have

the same additional information. If not, no data is returned.

v Return the target identity(ies) for the specified target registry that have the

same additional information that is specified.

eimGetTargetFromSource

276 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Format

#include <eim.h>

int eimGetTargetFromSource(EimHandle * eim,

 char * sourceRegistryName,

 char * sourceRegistryUserName,

 char * targetRegistryName,

 char * additionalInformation,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

sourceRegistryName

(Input) The source registry for this lookup operation. A null value for the string

causes the service to use the system default local registry name from the

instorage copy of the registry name.

sourceRegistryUserName

(Input) The source user name for this lookup operation. The registry user name

should begin with a non-blank character.

targetRegistryName

(Input) The target registry for this lookup operation. A null value for the string

causes the service to use the system default local registry name from the

instorage copy of the registry name.

additionalInfo

(Input) Additional information to use as selection criteria for this operation. This

can be NULL. This filter data can contain the wild card character, an asterisk

(*).

lengthOfListData

(Input) The number of bytes provided by the caller for the listData parameter. If

the value of bytesReturned is less than bytesAvailable in the returned listData

structure, you can use this number as the bytesAvailable size, update the

lengthOfListData parameter, and reissue the API to retrieve the data. The

minimum size required is 20 bytes.

listData

(Output) A pointer to the data to return. The EimList structure contains

information about the returned data. Entries are returned when the user is a

member of the required EIM access group and the source and target registries

exist. When the user is not a member of the required EIM access group or the

target registry does not exist, the return value is zero and no entries are

returned. The EimList structure follows:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

eimGetTargetFromSource

Chapter 11. EIM APIs 277

returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

The EimTargetIdentity structure follows:

 typedef struct EimTargetIdentity

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData userName; /* User name */

 } EimTargetIdentity;

The EimListData structure follows:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure, i.e. the

 structure containing this

 structure. */

 } EimListData;

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimGetTargetFromIdentifier” on page 270

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

v EIM registries administrator

v EIM identifiers administrator

v EIM mapping-lookup administrator

v EIM registry X administrator (for the source and target registries)

The list returned contains only the information that the user has authority to

access.

z/OS authorization

The calling application can be running in system key or supervisor state or

one of the following:

v The RACF user ID of the caller’s address space has READ authority to

the BPX.SERVER profile in the FACILITY class

eimGetTargetFromSource

278 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

v The current RACF user ID has READ authority to the

IRR.RGETINFO.EIM profile in the FACILITY class

The FACILITY class must be active and RACLISTed before unauthorized

(problem program state and keys) will be granted the authority to use this

SAF service.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful. If a target user ID is not returned in the listData and associations

are defined between the source registry user ID and the target registry, ensure the user

specified on the eimConnect or eimConnectToMaster is a member of the required EIM

access group.

EACCES Access denied. Not enough permissions to access data.

EBADDATA eimrc is not valid.

EBADNAME Source registry not found or insufficient access to EIM data.

EIMERR_NOREG (28) EIM registry not found or the bind user specified on the

EIM connect API is only a member of the target

registry’s EIM registry X administrator access group. If

a target user ID is not returned in the listData and

associations are defined between the source registry

user ID and the target registry, ensure the user

specified on the eimConnect or eimConnectToMaster is

a member of the required EIM access group.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least

20 bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

EMVSERR An MVS environment or internal error has occurred.

EIMERR_ZOS_DATA_CONVERSION (6011)

Error occurred when converting data between code

pages.

eimGetTargetFromSource

Chapter 11. EIM APIs 279

Return Value Meaning

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOSYS EIM is not configured

EIMERR_NOTCONFIG (30) (Only z/OS returns this value.) EIM environment is not

configured. On z/OS, issue RACF commands to

correct the configuration error and then try the request

again.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use the eimConnect API or

eimConnectToMaster API and try the request again.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNEXP_OBJ_VIOLATION (56)

Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example gets the target identity that is associated with the source

information:

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printListData(char * fieldName, void * entry, int offset);

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 EimConnectInfo con;

 char * ldapHost =

 "ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

 char listData[4000];

 EimList * list = (EimList *) listData;

 /* Set up error structure. */

 Memset(eimerr, 0x00, 200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=admin";

 con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* Create handle with specified LDAP URL */

 if (0 != (rc = eimCreateHandle(&handle,

 ldapHost,

 err))) {

eimGetTargetFromSource

280 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

printf("Create handle error = %d\n", rc);

 return -1;

 }

 /* Connect with specified credentials */

 if (0 != (rc = eimConnect(&handle,

 con,

 err))) {

 printf("Connect error = %d\n", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* Get target identity */

 if (0 != (rc = eimGetTargetFromSource(&handle,

 "kerberosRegistry",

 "mjjones",

 "MyRegistry",

 NULL,

 4000,

 list,

 err)))

 {

 printf("Get Target from source error = %d\n", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 /* Destroy the handle */

 rc = eimDestroyHandle(&handle, err);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimTargetIdentity * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimTargetIdentity *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Print out results */

 printListData("target user",

 entry,

 offsetof(EimTargetIdentity, userName));

 /* advance to next entry */

 entry = (EimTargetIdentity *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

eimGetTargetFromSource

Chapter 11. EIM APIs 281

}

void printListData(char * fieldName, void * entry, int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

void printAssociationType(int type)

{

 switch(type)

 {

 case EIM_TARGET:

 printf(" Target Association.\n");

 break;

 case EIM_CERT_FILTER_POLICY:

 printf(" Certificate Filter Policy Association.\n");

 break;

 case EIM_DEFAULT_REG_POLICY:

 printf(" Default Registry Policy Association.\n");

 break;

 case EIM_DEFAULT_DOMAIN_POLICY:

 printf(" Default Domain Policy Association.\n");

 break;

 default:

 printf("ERROR - unknown association type.\n");

 break;

 }

}

eimGetTargetFromSource

282 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimGetVersion

Purpose

Returns the EIM version supported by the APIs for the specified host.

Format

#include <eim.h>

int eimGetVersion(EimHostInfo * hostInfo,

 enum EimVersion * version,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle returned by a previous call to eimCreateHandle. A valid

connection is required for this function.

hostInfo

 (Input) The structure that contains the EIM host information for which to return

the EIM version supported by the EIM APIs.

For EIM_HANDLE (0) host type, this field must contain an EIM handle returned

by a previous call to eimCreateHandle and eimConnect.

For EIM_LDAP_URL (1) host type, this field must contain a uniform resource

locator (URL) that contains the EIM host information. A NULL value for the

ldapURL field indicates that the ldap URL information set by the

eimSetConfiguration API should be used. This URL has the following format:

ldap://host:port/dn

or

ldaps://host:port

Where:

host:port

The name of the host on which the EIM domain controller is running

with an optional port number.

dn The distinguished name of the domain to work with (optional).

ldaps Indicates that this host/port combination uses SSL and TLS.

The structure layout follows:

enum EimHostInfoType {

 EIM_HANDLE,

 EIM_LDAP_URL

};

typedef struct EimHostInfo {

 enum EimHostInfoType hostType;

 union {

 EimHandle * eim;

 char * ldapURL;

 } hostInfo;

} EimHostInfo;

version

(Output) The EIM version supported by the EIM APIs for the specified host.

Possible values are:

eimGetVersion

Chapter 11. EIM APIs 283

EIM_VERSION_0 (0)

EIM is not supported on the specified host.

EIM_VERSION_1 (1)

EIM version 1 is supported by the EIM APIs for the specified host. This

host will support EIM functionality provided with the first version of the

EIM APIs .

EIM_VERSION_2 (2)

EIM version 2 is supported by the EIM APIs for the specified host. This

host will support EIM functionality provided with the second version of

the EIM APIs, which includes support for policy associations.

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

None.

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

eimGetVersion

284 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Value Meaning

EINVAL Input parameter was not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_URL_NOHOST (47) URL does not have a host.

EIMERR_URL_NOTLDAP (49) URL does not begin with ldap.

EIMERR_TYPE_INVAL (69) The specified type is not valid.

EMVSSAFXTRERR SAF/RACF EXTRACT error.

EIMERR_ZOS_USER_XTR (6002)

RACROUTE REQUEST=EXTRACT error retrieving

EIM configuration information from the caller’s USER

profile.

EIMERR_ZOS_XTR_EIM(6003) RACROUTE REQUEST=EXTRACT error retrieving

EIM information from a RACF profile.

EIMERR_ZOS_XTR_PROXY (6005)

RACROUTE REQUEST=EXTRACT error retrieving

PROXY information from a RACF profile.

EMVSSAF2ERR SAF/RACF error.

EIMERR_ZOS_XTR_DOMAINDN (6004)

EIM domain distinguished name is missing.

EIMERR_ZOS_XTR_LDAPHOST (6006)

PROXY LDAP host is missing.

EIMERR_ZOS_XTR_BINDDN (6007)

PROXY bind distinguished name is missing.

EIMERR_ZOS_NO_ACEE (6010) No task or address space ACEE found.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

EIMERR_LDAP_SCHEMA_NOT_FOUND (71)

Unable to find LDAP schema.

eimGetVersion

Chapter 11. EIM APIs 285

eimListAccess

Purpose

Lists the users that have the specified EIM access type.

Format

#include <eim.h>

int eimListAccess(EimHandle * eim,

 enum EimAccessType accessType,

 char * registryName,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

accessType

(Input) The type of access to list. Valid values are:

EIM_ACCESS_ADMIN (0) Administrative authority to the entire EIM

domain.

EIM_ACCESS_REG_ADMIN (1)

Administrative authority to all registries in the

EIM domain.

EIM_ACCESS_REGISTRY (2) Administrative authority to the registry specified

in the registryName parameter.

EIM_ACCESS_IDENTIFIER_ADMIN (3)

Administrative authority to all of the identifiers in

the EIM domain.

EIM_ACCESS_MAPPING_LOOKUP (4)

Authority to perform mapping lookup

operations.

registryName

(Input) The name of the EIM registry for which to list access. Registry names

are case-independent (meaning, not case-sensitive). If eimAccessType is

anything other than EIM_ACCESS_REGISTRY, this parameter must be null.

 The following special characters are not allowed in registry names:

, = + < > # ; \ *

lengthOfListData

(Input) The number of bytes the caller provides for the listData parameter. If the

value of bytesReturned is less than bytesAvailable in the returned listData

structure, you can use this number as the bytesAvailable size, update the

lengthOfListData parameter, and reissue the API to retrieve the data. The

minimum size required is 20 bytes.

listData

(Output) A pointer to the data to return.

eimListAccess

286 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

The EimList structure contains information about the returned data. The data

returned is a linked list of EimAccess structures. The firstEntry is used to get to

the first EimAccess structures in the linked list. The number of completed

EimAccess structures is returned in entriesReturned. The bytesReturned

variable has the number of bytes the API used for the returned entries. If the

number of entries returned is less than the number of entries available, the

returned data contains as many complete EimAccess structures as will fit. It can

also contain a partial EimAccess structures.The EimList structure follows:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

The EimAccess structure follows:

 typedef struct EimAccess

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData user; /* User with access. This data will

 be in the format of the DN for

 for access id. */

 } EimAccess;

The EimListData structure follows:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure, i.e. the

 structure containing this

 structure. */

 } EimListData;

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimAddAccess” on page 166

v “eimListUserAccess” on page 344

v “eimQueryAccess” on page 351

v “eimRemoveAccess” on page 355

eimListAccess

Chapter 11. EIM APIs 287

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

The list returned contains only the information that the user has authority to

access.

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EBADDATA eimrc is not valid.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least

20 bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_REG_MUST_BE_NULL (55)

Registry name must be NULL when access type is not

EIM_ACCESS_REGISTRY.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

eimListAccess

288 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Value Meaning

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example lists all users with access to the EIM Adminstrator access

group:

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printListData(char * fieldName, void * entry, int offset);

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 EimConnectInfo con;

 char * ldapHost =

 "ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

 char listData[1000];

 EimList * list = (EimList *) listData;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=admin";

 con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* Create handle with specified LDAP URL */

 if (0 != (rc = eimCreateHandle(&handle,

 ldapHost,

 err))) {

 printf("Create handle error = %d\n", rc);

 return -1;

 }

 /* Connect with specified credentials */

 if (0 != (rc = eimConnect(&handle,

 con,

 err))) {

 printf("Connect error = %d\n", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* List all users with this access */

 if (0 != (rc = eimListAccess(&handle,

 EIM_ACCESS_ADMIN,

 NULL,

 1000,

eimListAccess

Chapter 11. EIM APIs 289

list,

 err)))

 {

 printf("List access error = %d\n", rc);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 /* Destroy the handle */

 rc = eimDestroyHandle(&handle, err);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimAccess * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimAccess *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Print out results */

 printListData("Access user",

 entry,

 offsetof(EimAccess, user));

 /* advance to next entry */

 entry = (EimAccess *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printListData(char * fieldName, void * entry, int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

eimListAccess

290 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimListAssociations

Purpose

Returns a list of associations for a given EIM identifier. You can use this to find all

of the associated identities for an individual in the enterprise. Note that this does

not return policy associations.

Format

#include <eim.h>

int eimListAssociations(EimHandle * eim,

 enum EimAssociationType associationType,

 EimIdentifierInfo * idName,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

associationType

(Input) The type of association to list. Valid values are:

EIM_ALL_ASSOC (0) List all associations.

EIM_TARGET (1) List target associations.

EIM_SOURCE (2) List source associations.

EIM_SOURCE_AND_TARGET (3)

List both source and target associations.

EIM_ADMIN (4) List administrative associations.

idName

(Input) A structure that contains the identifier name indicating the associations to

list. The layout of the EimIdentifierInfo structure follows:

 enum EimIdType {

 EIM_UNIQUE_NAME,

 EIM_ENTRY_UUID,

 EIM_NAME

 };

 typedef struct EimIdentifierInfo

 {

 union {

 char * uniqueName;

 char * entryUUID;

 char * name;

 } id;

 enum EimIdType idtype;

 } EimIdentifierInfo;

idtype

The idtype in the EimIdentifierInfo structure indicates which identifier name

has been provided. EIM_UNIQUE_NAME finds at most one matching

eimListAssociations

Chapter 11. EIM APIs 291

identifier. EIM_NAME results in an error if your EIM domain has more than

one identifier containing the same name.

lengthOfListData

(Input) The number of bytes the caller provides for the listData parameter. If the

value of bytesReturned is less than bytesAvailable in the returned listData

structure, you can use this number as the bytesAvailable size, update the

lengthOfListData parameter, and reissue the API to retrieve the data. Minimum

size required is 20 bytes.

listData

(Output) A pointer to the EimList structure.

 The EimList structure contains information about the returned data. The data

returned is a linked list of EimAssociation structures. The firstEntry field in the

EimList structure is used to get to the first EimAssociation structure in the linked

list. The number of completed EimAssociation structures is returned in

entriesReturned. The bytesReturned variable has the number of bytes the API

used for the returned entries. If the number of entries returned is less than the

number of entries available, the returned data contains as many complete

EimAssociation structures as will fit. It can also contain a partial EimAssociation

structure.The EimList structure follows:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

The EimAssociation structure follows:

typedef struct EimAssociation

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 enum EimAssociationType associationType; /* Type of association */

 EimListData registryType; /* Registry type */

 EimListData registryName; /* Registry name */

 EimListData registryUserName; /* Registry user name */

 } EimAssociation;

The EimListData structure follows:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure, i.e. the

 structure containing this

 structure. */

 } EimListData;

eimListAssociations

292 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimAddAssociation” on page 174

v “eimGetAssociatedIdentifiers” on page 254

v “eimRemoveAssociation” on page 359

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

v EIM registries administrator

v EIM identifiers administrator

v EIM registry X administrator

v EIM mapping lookup

The list returned contains only the information that the user has authority to

access.

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EBADDATA eimrc is not valid.

EBADNAME Identifier name is not valid.

EIMERR_IDNAME_AMBIGUOUS (20)

More than one EIM identifier was found that matches

the requested identifier name.

EIMERR_NOIDENTIFIER (25) EIM identifier not found or insufficient access to EIM

data.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

eimListAssociations

Chapter 11. EIM APIs 293

Return Value Meaning

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_ASSOC_TYPE_INVAL (4)

Association type is not valid.

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least

20 bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_IDNAME_TYPE_INVAL (52)

The EimIdType value is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNEXP_OBJ_VIOLATION (56)

Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example lists the associations for an identifier:

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printAssociationType(int type);

void printListData(char * fieldName, void * entry, int offset);

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 EimConnectInfo con;

 char * ldapHost =

 "ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

eimListAssociations

294 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

char listData[4000];

 EimList * list = (EimList *) listData;

 EimIdentifierInfo x;

 /* Set up error structure. */

 Memset(eimerr, 0x00, 200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=admin";

 con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* Create handle with specified LDAP URL */

 if (0 != (rc = eimCreateHandle(&handle,

 ldapHost,

 err))) {

 printf("Create handle error = %d\n", rc);

 return -1;

 }

 /* Connect with specified credentials */

 if (0 != (rc = eimConnect(&handle,

 con,

 err))) {

 printf("Connect error = %d\n", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* Set up identifier information */

 x.idtype = EIM_UNIQUE_NAME;

 x.id.uniqueName = "mjones";

 /* Get associations for this identifier */

 if (0 != (rc = eimListAssociations(&handle,

 EIM_ALL_ASSOC,

 &x,

 4000,

 list,

 err)))

 {

 printf("List Association error = %d\n", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 /* Destroy the handle */

 rc = eimDestroyHandle(&handle, err);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimAssociation * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

eimListAssociations

Chapter 11. EIM APIs 295

printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimAssociation *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Association type */

 printAssociationType(entry->associationType);

 /* Print out results */

 printListData("Registry Type",

 entry,

 offsetof(EimAssociation, registryType));

 printListData("Registry Name",

 entry,

 offsetof(EimAssociation, registryName));

 printListData("Registry User Name",

 entry,

 offsetof(EimAssociation, registryUserName));

 /* advance to next entry */

 entry = (EimAssociation *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printAssociationType(int type)

{

 switch(type)

 {

 case EIM_TARGET:

 printf(" Target Association.\n");

 break;

 case EIM_SOURCE:

 printf(" Source Association.\n");

 break;

 case EIM_ADMIN:

 printf(" Admin Association.\n");

 break;

 default:

 printf("ERROR - unknown association type.\n");

 break;

 }

}

void printListData(char * fieldName, void * entry, int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

eimListAssociations

296 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

else

 printf("Not found.\n");

}

eimListAssociations

Chapter 11. EIM APIs 297

eimListDomains

Purpose

Lists information for a single EIM domain or for all EIM domains that are stored on

an LDAP server. To list a single domain, the ldapURL parameter must contain the

distinguished name of the EIM domain.

To list all domains stored on an LDAP server, omit the distinguished name of the

EIM domain from the ldapURL parameter.

Format

#include <eim.h>

int eimListDomains(char * ldapURL,

 EimConnectInfo connectInfo,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

Parameters

ldapURL

(Input) A uniform resource locator (URL) that contains the EIM host information.

This parameter is required. This URL has the following format:

ldap://host:port/dn

or

ldaps://host:port/dn

host:port

Name of the host on which the EIM domain controller is running. (The

port number is optional. If not specified, the default LDAP or LDAPS

port will be used.)

dn Distinguished name of the domain to list. If you do not specify DN, then

eimListDomains returns all domains stored on an LDAP server.

 Examples:

ldap://systemx:389/ibm-eimDomainName=myEimDomain,o=myCompany,c=us

ldaps://systemy:636/ibm-eimDomainName=thisEimDomain,o=myCompany,c=us

Note: In contrast with ldap, ldaps indicates that this host and port

combination uses SSL and TLS.

connectInfo

(Input) Connect information. This parameter provides the information required to

bind to LDAP. If the system is configured to connect to a secure port,

EimSSLInfo is required.

 For the EIM_SIMPLE connect type, the creds field should contain the

EimSimpleConnectInfo structure with a binddn and password.

EimPasswordProtect determines the level of password protection on the LDAP

bind.

EIM_PROTECT_NO (0) The clear-text password is sent on the bind.

EIM_PROTECT_CRAM_MD5 (1)

The protected password is sent on the bind.

eimListDomains

298 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

The server side must support cram-md5

protocol to send the protected password.

EIM_PROTECT_CRAM_MD5_OPTIONAL (2)

The protected password is sent on the bind if

the cram-md5 protocol is supported. Otherwise,

the clear-text password is sent.

For EIM_KERBEROS, the default logon credentials are used. The

kerberos_creds field must be NULL.

For EIM_CLIENT_AUTHENTICATION, the creds field is ignored. The ssl field

must point to a valid EimSSLInfo structure. The keyring field is required in the

EimSSLInfo structure. It can be the name of a System SSL key database file or

a RACF keyring name. The keyring_pw field is required when the keyring is the

name of a System SSL key database field. The certificateLabel field is

optional. If it is NULL the default certificate in the keyring is used.

The structure layouts follow:

 enum EimPasswordProtect {

 EIM_PROTECT_NO,

 EIM_PROTECT_CRAM_MD5,

 EIM_PROTECT_CRAM_MD5_OPTIONAL

 };

 enum EimConnectType {

 EIM_SIMPLE,

 EIM_KERBEROS,

 EIM_CLIENT_AUTHENTICATION

 };

 typedef struct EimSimpleConnectInfo

 {

 enum EimPasswordProtect protect;

 char * bindDn;

 char * bindPw;

 } EimSimpleConnectInfo;

 typedef struct EimSSLInfo

 {

 char * keyring;

 char * keyring_pw;

 char * certificateLabel;

 } EimSSLInfo;

 typedef struct EimConnectInfo

 {

 enum EimConnectType type;

 union {

 gss_cred_id_t * kerberos;

 EimSimpleConnectInfo simpleCreds;

 } creds;

 EimSSLInfo * ssl;

 } EimConnectInfo;

lengthOfListData

(Input) The number of bytes the caller provides for the list of domains. If the

value of bytesReturned is less than bytesAvailable in the returned listData

structure, you can use this number as the bytesAvailable size, update the

lengthOfListData parameter, and reissue the API to retrieve the data. The API

returns the number of bytes available for the entire list and as much data as

space has been provided. Minimum size required is 20 bytes.

eimListDomains

Chapter 11. EIM APIs 299

listData

(Output) A pointer to the data to return. The EimList structure contains

information about the returned data. The data returned is a linked list of

EimDomain structures. The firstEntry field in the EimList Structure is used to get

to the first EimDomain structure in the linked list. The number of completed

EimDomain structures is returned in entriesReturned. The bytesReturned

variable has the number of bytes the API used for the returned entries. If the

number of entries returned is less than the number of entries available, the

returned data contains as many complete EimDomain structures as will fit. It

can also contain a partial EimDomain structure.The EimList structure follows:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

The EimDomain structure follows:

 typedef struct EimDomain

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData name; /* Domain name */

 EimListData DN; /* Distinguished name for the domain

 */

 EimListData description; /* Description */

 enum EimStatus policyAssociations; /* Policy associations

 attribute @01A*/

 } EimDomain;

The EimListData structure follows:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure, i.e. the

 structure containing this

 structure. */

 } EimListData;

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimChangeDomain” on page 194

eimListDomains

300 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

v “eimCreateDomain” on page 225

v “eimDeleteDomain” on page 234

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

The list returned contains only the information that the user has authority to

access.

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EBADDATA eimrc is not valid.

EBADNAME EIM domain not found or insufficient access to EIM data.

EIMERR_NODOMAIN (24) EIM domain not found or insufficient access to EIM

data.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

eimListDomains

Chapter 11. EIM APIs 301

Return Value Meaning

EINVAL Input parameter was not valid.

EIMERR_CONN_INVAL (54) Connection type is not valid.

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least

20 bytes in length.

EIMERR_NOT_SECURE (32) The system is not configured to connect to a secure

port. Connection type of

EIM_CLIENT_AUTHENTICATION is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PROTECT_INVAL (22) The protect parameter in EimSimpleConnectInfo is not

valid.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

EIMERR_SSL_REQ (42) The system is configured to connect to a secure port.

EimSSLInfo is required.

EIMERR_URL_NOHOST (47) URL does not have a host.

EIMERR_URL_NOTLDAP (49) URL does not begin with ldap.

EIMERR_CREDS_MUST_BE_NULL (58)

The connectInfo parameter of the EIM API does not

have a NULL value for the creds field in the

EimConnectInfo structure.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTSUP Connection type is not supported.

EIMERR_CONN_NOTSUPP (12) Connection type is not supported.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example lists the information for the specified EIM domain:

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

void printListResults(EimList * list);

void printListData(char * fieldName, void * entry, int offset);

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[200];

 EimRC * err;

 char listData[1000];

 EimList * list = (EimList *) listData;

eimListDomains

302 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

char * errstr;

 char * ldapURL = "ldap://localhost:389";

 EimConnectInfo con;

 /* Set up connection information */

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=administrator";

 con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 /* Get info for specified domain */

 if (0 != (rc = eimListDomains(ldapURL,

 con,

 1000,

 list,

 err)))

 {

 printf("List domain error = %d - %s\n", rc, errstr=eimErr2String(err));

 if (NULL != errstr) free(errstr);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimDomain * entry;

 EimListData * listData;

 char * data;

 int dataLength;

 enum EimStatus * status;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimDomain *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Print out results */

 printListData("Domain Name",

 entry,

 offsetof(EimDomain, name));

 printListData("Domain DN",

 entry,

 offsetof(EimDomain, dn));

 printListData("description",

 entry,

eimListDomains

Chapter 11. EIM APIs 303

offsetof(EimDomain, description));

 printf(" Policy Associations are ");

 status = (enum EimStatus *)((char *)entry +

 offsetof(EimDomain, policyAssociations));

 if (*status == EIM_STATUS_ENABLED) {

 printf("Enabled\n");

 } else {

 printf("Disabled\n");

 }

 /* advance to next entry */

 entry = (EimDomain *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printListData(char * fieldName, void * entry, int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

eimListDomains

304 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimListIdentifiers

Purpose

Returns a list of identifiers in the EIM domain. idName can be used to filter the

results returned.

Format

#include <eim.h>

int eimListIdentifiers(EimHandle * eim,

 EimIdentifierInfo * idName,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

idName

(Input) A structure that contains the name for this identifier. This parameter can

be NULL; in this case the API returns all identifiers in the domain. The layout of

the EimIdentifierInfo structure follows:

 enum EimIdType {

 EIM_UNIQUE_NAME,

 EIM_ENTRY_UUID,

 EIM_NAME

 };

 typedef struct EimIdentifierInfo

 {

 union {

 char * uniqueName;

 char * entryUUID;

 char * name;

 } id;

 enum EimIdType idtype;

 } EimIdentifierInfo;

idtype

The idtype in the EimIdentifierInfo structure indicates which identifier name

has been provided. There is no guarantee that name will find a unique

identifier. Therefore, using name can result in the return of multiple

identifiers. The id values uniqueName, entryUUID and name can contain the

wild card character, an asterisk (*).

lengthOfListData

(Input) The number of bytes the caller provides for the listData parameter. If the

value of bytesReturned is less than bytesAvailable in the returned listData

structure, you can use this number as the bytesAvailable size, update the

lengthOfListData parameter, and reissue the API to retrieve the data. The

minimum size required is 20 bytes.

listData

(Output) A pointer to the EimList structure. The EimList structure contains

information about the returned data. The data returned is a linked list of

eimListIdentifiers

Chapter 11. EIM APIs 305

EimIdentifier structures. The firstEntry field in the EimList structure is used to

get to the first EimIdentifier structure in the linked list. The number of completed

EimIdentifier structures is returned in entriesReturned. The bytesReturned

variable has the number of bytes the API used for the returned entries. If the

number of entries returned is less than the number of entries available, the

returned data contains as many complete EimIdentifier structures as will fit. It

can also contain a partial EimIdentifier structure.The EimList structure follows:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

The EimIdentifier structure follows:

 typedef struct EimIdentifier

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData uniquename; /* Unique name */

 EimListData description; /* Description */

 EimListData entryUUID; /* UUID */

 EimSubList names; /* EimIdentifierName sublist */

 EimSubList additionalInfo; /* EimAddlInfo sublist */

 } EimIdentifier;

Identifiers might have defined several name attributes as well as several

additional information attributes. In the EimIdentifier structure, the names

EimSubList gives addressability to a linked list of EimIdentifierName structures.

The EimIdentifierName follows:

 typedef struct EimIdentifierName

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData name; /* Name */

 } EimIdentifierName;

The additionalInfo EimSubList gives addressability to a linked list of EimAddlInfo

structures. The EimAddlInfo structure follows:

 typedef struct EimAddlInfo

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData addlInfo; /* Additional info */

 } EimAddlInfo;

The EimSubList structure follows:

eimListIdentifiers

306 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

typedef struct EimSubList

 {

 unsigned int listNum; /* Number of entries in the list */

 unsigned int disp; /* Displacement to sublist. This

 byte offset is relative to the

 start of the parent structure, i.e.

 the structure containing this

 structure. */

 } EimSubList;

The EimListData structure follows:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure, i.e. the

 structure containing this

 structure. */

 } EimListData;

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimAddIdentifier” on page 179

v “eimChangeIdentifier” on page 199

v “eimGetAssociatedIdentifiers” on page 254

v “eimRemoveIdentifier” on page 364

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

v EIM registries administrator

v EIM identifiers administrator

v EIM registry X administrator

v EIM mapping lookup

The list returned contains only the information that the user has authority to

access.

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

eimListIdentifiers

Chapter 11. EIM APIs 307

Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EBADDATA eimrc is not valid.

EBADNAME Identifier name is not valid.

EIMERR_NOIDENTIFIER (25) EIM identifier not found.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least

20 bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_IDNAME_TYPE_INVAL (52)

The EimIdType value is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example illustrates listing all EIM identifiers:

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printSubListData(char * fieldName, void * entry, int offset);

void printListData(char * fieldName, void * entry, int offset);

int main(int argc, char *argv[])

{

eimListIdentifiers

308 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 EimConnectInfo con;

 char * ldapHost =

 "ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

 char listData[4000];

 EimList * list = (EimList *) listData;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=admin";

 con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* Create handle with specified LDAP URL */

 if (0 != (rc = eimCreateHandle(&handle,

 ldapHost,

 err))) {

 printf("Create handle error = %d\n", rc);

 return -1;

 }

 /* Connect with specified credentials */

 if (0 != (rc = eimConnect(&handle,

 con,

 err))) {

 printf("Connect error = %d\n", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* Get all identifiers */

 if (0 != (rc = eimListIdentifiers(&handle,

 NULL,

 4000,

 list,

 err)))

 {

 printf("List identifiers error = %d\n", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 /* Destroy the handle */

 rc = eimDestroyHandle(&handle, err);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimIdentifier * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

eimListIdentifiers

Chapter 11. EIM APIs 309

printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimIdentifier *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Print out results */

 printListData("Unique name",

 entry,

 offsetof(EimIdentifier, uniquename));

 printListData("description",

 entry,

 offsetof(EimIdentifier, description));

 printListData("entryUUID",

 entry,

 offsetof(EimIdentifier, entryUUID));

 printSubListData("Names",

 entry,

 offsetof(EimIdentifier, names));

 printSubListData("Additional Info",

 entry,

 offsetof(EimIdentifier, additionalInfo));

 /* advance to next entry */

 entry = (EimIdentifier *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printSubListData(char * fieldName, void * entry, int offset)

{

 int i;

 EimSubList * subList;

 EimAddlInfo * subentry;

 /* Address the EimSubList object */

 subList = (EimSubList *)((char *)entry + offset);

 if (subList->listNum > 0)

 {

 subentry = (EimAddlInfo *)((char *)entry + subList->disp);

 for (i = 0; i < subList->listNum; i++)

 {

 /* Print out results */

 printListData(fieldName, subentry,

 offsetof(EimAddlInfo, addlInfo));

 /* advance to next entry */

 subentry = (EimAddlInfo *)((char *)subentry +

 subentry->nextEntry);

 }

 }

}

void printListData(char * fieldName, void * entry, int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

eimListIdentifiers

310 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

eimListIdentifiers

Chapter 11. EIM APIs 311

eimListPolicyFilters

Purpose

Lists policy filters for the domain.

Format

#include <eim.h>

int eimListPolicyFilters(EimHandle * eim,

 enum EimPolicyFilterType filterType,

 char * registryName,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

filterType

(Input) The type of policy filters to be listed. Valid values are:

EIM_ALL_FILTERS (0)

List all policy filters.

EIM_CERTIFICATE_FILTER (1)

List certificate policy filters.

registryName

(Input) The name of the X509 registry for which you want to list policy filters. If

NULL is specified, then policy filters for the entire domain are listed.

lengthOfListData

(Input) The number of bytes provided by the caller for the listData parameter. If

the value of bytesReturned is less than bytesAvailable in the returned listData

structure, you can use this number as the bytesAvailable size, update the

lengthOfListData parameter, and reissue the API to retrieve the data. The

minimum size is 20 bytes.

listData

(Output) A pointer to the EimList structure, which contains information about the

returned data. The API returns as much data as space allows. The data

returned is a linked list of EimPolicyFilter structures. The EimList structure

follows:

typedef struct EimList

{

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

} EimList;

eimListPolicyFilters

312 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

The EimPolicyFilter structure follows:

typedef struct EimPolicyFilter

{

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 enum EimPolicyFilterType type; /* Type of policy filter. */

 EimListData sourceRegistry; /* Source registry name the policy

 filter is defined for. */

 EimListData filterValue; /* Policy filter value. */

} EimPolicyFilter;

The EimListData structure follows:

typedef struct EimListData

{

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

} EimListData;

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimAddPolicyFilter” on page 187

v “eimRemovePolicyFilter” on page 371

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

v EIM registries administrator

v EIM identifiers administrator

v EIM Mapping Lookup

v EIM registry authority

The list returned (which can be empty) contains only the information that

the user has authority to access.

z/OS authorization

No special authority is needed.

Return Values

 Return Value Meaning

0 Request was successful.

eimListPolicyFilters

Chapter 11. EIM APIs 313

Return Value Meaning

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) (z/OS does not return this value.) Insufficient access to

EIM data.

EBADDATA eimrc is not valid.

EBADNAME Identifier name is not valid or insufficient access to EIM data.

EIMERR_NOREG (28) EIM Registry not found or insufficient access to EIM

data.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least

20 bytes in length.

EIMERR_FUNCTION_NOT_SUPPORTED (70)

The specified or configured EIM Domain controller

does not support this API.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

EIMERR_POLICY_FILTER_TYPE_INVAL (60)

Policy filter type is not valid.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

EIMERR_UNEXP_OBJ_VIOLATION (56)

Unexpected object violation.

Example

The following example lists certificate policy filters for a registry.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

eimListPolicyFilters

314 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

#include <string.h>

void printListResults(EimList * list);

void printListData(char * fieldName,

 void * entry,

 int offset);

int main (int argc, char *argv[])

{

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 char listData[1000];

 EimList * list = (EimList *)listData;

 EimConnectInfo con;

 char * ldapHost =

 "ldap://localhost:389/ibm-eimDomainName=MyDomain,o=MyCompany,c=us";

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=administrator";

 con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* Create handle with specified LDAP URL */

 if (0 != (rc = eimCreateHandle(&handle, ldapHost, err))) {

 printf("Create handle error = %d\n", rc);

 return -1;

 }

 /* Connect with specified credentials */

 if (0 != (rc = eimConnect(&handle, con, err))) {

 printf("Connect error = %d\n", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* Get source registry policies */

 if (0 != (rc = eimListPolicyFilters(&handle,

 EIM_ALL_FILTERS,

 NULL,

 1000,

 list,

 err)))

 {

 printf("List EIM Policy Filters error = %d", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 /* Destroy the handle */

 rc = eimDestroyHandle(&handle, err);

 return 0;

}

void printListResults(EimList * list)

eimListPolicyFilters

Chapter 11. EIM APIs 315

{

 int i;

 EimPolicyFilter * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimPolicyFilter *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Print out results */

 printListData("Source Registry",

 entry,

 offsetof(EimPolicyFilter, sourceRegistry));

 printListData("Filter Value",

 entry,

 offsetof(EimPolicyFilter, filterValue));

 /* advance to next entry */

 entry = (EimPolicyFilter *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

eimListPolicyFilters

316 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimListRegistries

Purpose

Lists the user registries participating in the EIM domain. You can use the

registryType, registryName and registryKind parameters to filter the results returned.

Format

#include <eim.h>

int eimListRegistries(EimHandle * eim,

 char * registryName,

 char * registryType,

 enum EimRegistryKind registryKind,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

registryName

(Input) The name of the EIM registry to list. The name can contain the wild card

character, an asterisk (*). This is used as a filter to determine which registries to

return. This parameter can be NULL; in this case, no filtering is done by name.

Registry names are case-independent (meaning, not case-sensitive).

registryType

(Input) A string form of an OID that represents the registry type and a user

name normalization method. The normalization method is necessary because

some registries are case-independent and others are case-dependent. EIM

uses this information to make sure the appropriate search occurs for registry

user names.

 The predefined registry types that EIM provides include the following:

v EIM_REGTYPE_AIX

v EIM_REGTYPE_DOMINO_LONG

v EIM_REGTYPE_DOMINO_SHORT

v EIM_REGTYPE_KERBEROS_EX

v EIM_REGTYPE_KERBEROS_IG

v EIM_REGTYPE_LDAP

v EIM_REGTYPE_LINUX

v EIM_REGTYPE_NDS

v EIM_REGTYPE_OS400

v EIM_REGTYPE_POLICY_DIRECTOR

v EIM_REGTYPE_RACF

v EIM_REGTYPE_TIVOLI_ACCESS_MANAGER

v EIM_REGTYPE_WIN2K

v EIM_REGTYPE_WIN_DOMAIN_KERB_IG

v EIM_REGTYPE_WINDOWS_LOCAL_WS

eimListRegistries

Chapter 11. EIM APIs 317

v EIM_REGTYPE_X509

You can also create your own registry type. This parameter can also be NULL;

in this case, the API returns all registry types.

registryKind

(Input) The kind of registry to list. Valid values are:

EIM_ALL_REGISTRIES (0) EIM returns both system and application

registries.

EIM_SYSTEM_REGISTRY (1) EIM returns only system registries.

EIM_APPLICATION_REGISTRY (2)

EIM returns only application registries.

lengthOfListData

(Input) The number of bytes the caller provids for the listData parameter. If the

value of bytesReturned is less than bytesAvailable in the returned listData

structure, you can use this number as the bytesAvailable size, update the

lengthOfListData parameter, and reissue the API to retrieve the data. The

minimum size required is 20 bytes.

listData

(Output) A pointer to the data to return. The EimList structure contains

information about the returned data. The data returned is a linked list of

EimRegistry structures. The firstEntry field in the EimList structure is used to get

to the first EimRegistry structure in the linked list. The number of completed

EimRegistry structures is returned in entriesReturned. The bytesReturned

variable has the number of bytes the API used for the returned entries. If the

number of entries returned is less than the number of entries available, the

returned data contains as many complete EimRegistry structures as will fit. It

can also contain a partial EimRegistry structure.The EimList structure follows:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

The EimRegistry structure follows:

 typedef struct EimRegistry

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 enum EimRegistryKind kind; /* Kind of registry */

 EimListData name; /* Registry name */

 EimListData type; /* Registry type */

 EimListData description; /* Description */

 EimListData entryUUID; /* Entry UUID */

 EimListData URI; /* URI */

 EimListData systemRegistryName; /* System registry name */

 EimSubList registryAlias; /* EimRegistryAlias sublist */

eimListRegistries

318 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

enum EimStatus mappingLookup; /* Mapping lookup attribute */

 enum EimStatus policyAssociations; /* Policy associations

 attribute */

 } EimRegistry;

Registries can have a number of defined aliases. In the EimRegistry structure,

the registryAlias EimSubList gives addressability to the first EimRegistryAlias

structure. The EimRegistryAlias structure follows:

 typedef struct EimRegistryAlias

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData type; /* Alias type */

 EimListData value; /* Alias value */

 } EimRegistryAlias;

The EimSubList structure follows:

 typedef struct EimSubList

 {

 unsigned int listNum; /* Number of entries in the list */

 unsigned int disp; /* Displacement to sublist. This

 byte offset is relative to the

 start of the parent structure i.e.

 the structure containing this

 structure */

 } EimSubList;

The EimListData structure follows:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure, i.e. the

 structure containing this

 structure. */

 } EimListData;

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimAddApplicationRegistry” on page 170

v “eimAddSystemRegistry” on page 190

v “eimChangeRegistry” on page 203

v “eimRemoveRegistry” on page 374

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

eimListRegistries

Chapter 11. EIM APIs 319

v EIM registries administrator

v EIM identifiers administrator

v EIM registry X administrator

v EIM mapping lookup

The list returned (which can be empty) contains only the information that

the user has authority to access.

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EBADDATA eimrc is not valid.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least

20 bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_REGKIND_INVAL (38) Requested registry kind is not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

eimListRegistries

320 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Example

The following example lists all registries found:

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

void printRegistryKind(int kind);

void printListResults(EimList * list);

void printListData(char * fieldName, void * entry, int offset);

void printAliasSubList(void * entry, int offset);

int main (int argc, char *argv[])

{

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 EimConnectInfo con;

 char * errstr;

 char * ldapHost =

 "ldap://localhost:389/ibm-eimdomainname=MyDomain,o=MyCompany,c=US";

 char listData[16000];

 EimList * list = (EimList *) listData;

 /* Set up error structure. */

 memset(eimerr, 0x00, 200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=administrator";

 con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* Create handle with specified LDAP URL */

 if (0 != (rc = eimCreateHandle(&handle,

 ldapHost,

 err))) {

 printf("Create handle error = %d\n", rc);

 return -1;

 }

 /* Connect with specified credentials */

 if (0 != (rc = eimConnect(&handle,

 con,

 err))) {

 printf("Connect error = %d\n", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* Get all registries */

 memset(eimerr, 0x00, 200);

 err->memoryProvidedByCaller = 200;

 if (0 != (rc = eimListRegistries(&handle,

 NULL,

 NULL,

 EIM_ALL_REGISTRIES,

 16000,

 list,

eimListRegistries

Chapter 11. EIM APIs 321

err))) {

 printf("List registries error = %d - %s\n", rc, eimErr2String(err));

 if (NULL != errstr) free(errstr);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 /* Destroy the handle */

 rc = eimDestroyHandle(&handle, err);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimRegistry * entry;

 enum EimStatus * status;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimRegistry *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Registry kind */

 printRegistryKind(entry->kind);

 /* Print out results */

 printListData("Registry Name",

 entry,

 offsetof(EimRegistry, name));

 printListData("Registry Type",

 entry,

 offsetof(EimRegistry, type));

 printListData("description",

 entry,

 offsetof(EimRegistry, description));

 printListData("entryUUID",

 entry,

 offsetof(EimRegistry, entryUUID));

 printListData("URI",

 entry,

 offsetof(EimRegistry, URI));

 printListData("system registry name",

 entry,

 offsetof(EimRegistry, systemRegistryName));

 printAliasSubList(entry,

 offsetof(EimRegistry, registryAlias));

 status = (enum EimStatus *)((char *)entry +

 offsetof(EimRegistry, mappingLookup));

 if ((*status) == EIM_STATUS_ENABLED) {

eimListRegistries

322 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

printf(" Mapping Lookup operations are Enabled\n");

 } else {

 printf(" Mapping Lookup operations are Disabled\n");

 }

 status = (enum EimStatus *)((char *)entry +

 offsetof(EimRegistry, policyAssociations));

 if ((*status) == EIM_STATUS_ENABLED) {

 printf(" Policy Associations are Enabled\n");

 } else {

 printf(" Policy Associations are Disabled\n");

 }

 /* advance to next entry */

 entry = (EimRegistry *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printRegistryKind(int kind)

{

 switch(kind)

 {

 case EIM_SYSTEM_REGISTRY:

 printf(" System Registry.\n");

 break;

 case EIM_APPLICATION_REGISTRY:

 printf("Application Registry.\n");

 break;

 default:

 printf("ERROR - unknown registry kind.\n");

 break;

 }

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

void printAliasSubList(void * entry,

 int offset)

eimListRegistries

Chapter 11. EIM APIs 323

{

 int i;

 EimSubList * subList;

 EimRegistryAlias * subentry;

 /* Address the EimSubList object */

 subList = (EimSubList *)((char *)entry + offset);

 if (subList->listNum > 0)

 {

 subentry = (EimRegistryAlias *)((char *)entry +

 subList->disp);

 for (i = 0; i < subList->listNum; i++)

 {

 /* Print out results */

 printListData("Registry alias type",

 subentry,

 offsetof(EimRegistryAlias, type));

 printListData("Registry alias value",

 subentry,

 offsetof(EimRegistryAlias, value));

 /* advance to next entry */

 subentry = (EimRegistryAlias *)((char *)subentry +

 subentry->nextEntry);

 }

 }

}

eimListRegistries

324 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimListRegistryAliases

Purpose

Returns a list of all the aliases defined for a particular registry.

Format

#include <eim.h>

int eimListRegistryAliases(EimHandle * eim,

 char * registryName,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

registryName

(Input) The name of the registry for which to list aliases. Registry names are

case-independent (meaning, not case-sensitive).

 The following special characters are not allowed in registry names:

, = + < > # ; \ *

lengthOfListData

(Input) The number of bytes the caller provides for the listData parameter. If the

value of bytesReturned is less than bytesAvailable in the returned listData

structure, you can use this number as the bytesAvailable size, update the

lengthOfListData parameter, and reissue the API to retrieve the data. The

minimum size required is 20 bytes.

listData

(Output) A pointer to the data to return.

 The EimList structure contains information about the returned data. The data

returned is a linked list of EimRegistryAlias structures. The firstEntry field in the

EimList structure is used to get to the first EimRegistryAlias structure in the

linked list. The number of completed EimRegistryAlias structures is returned in

entriesReturned. The bytesReturned variable has the number of bytes the API

used for the returned entries. If the number of entries returned is less than the

number of entries available, the returned data contains as many complete

EimRegistryAlias structures as will fit. It can also contain a partial

EimRegistryAlias structure.The EimList structure follows:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

eimListRegistryAliases

Chapter 11. EIM APIs 325

list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

The EimRegistryAlias structure follows:

 typedef struct EimRegistryAlias

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData type; /* Alias type */

 EimListData value; /* Alias value */

 } EimRegistryAlias;

The EimListData follows:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure, i.e. the

 structure containing this

 structure. */

 } EimListData;

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimChangeRegistryAlias” on page 207

v “eimGetRegistryNameFromAlias” on page 265

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

v EIM registries administrator

v EIM identifiers administrator

v EIM registry X administrator

v EIM mapping lookup

The returned list contains only the information that the user has authority to

access, meaning it could be empty.

z/OS authorization

No special authorization is needed.

eimListRegistryAliases

326 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EBADDATA eimrc is not valid.

EBADNAME Registry not found or insufficient access to EIM data.

EIMERR_NOREG (28) EIM registry not found or insufficient access to EIM

data.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least

20 bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example lists all aliases for the specified registry:

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printListData(char * fieldName, void * entry, int offset);

eimListRegistryAliases

Chapter 11. EIM APIs 327

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 EimConnectInfo con;

 char * ldapHost =

 "ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

 char listData[1000];

 EimList * list = (EimList *) listData;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=administrator";

 con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* Create handle with specified LDAP URL */

 if (0 != (rc = eimCreateHandle(&handle,

 ldapHost,

 err))) {

 printf("Create handle error = %d\n", rc);

 return -1;

 }

 /* Connect with specified credentials */

 if (0 != (rc = eimConnect(&handle,

 con,

 err))) {

 printf("Connect error = %d\n", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* Get all aliases for the registry */

 if (0 != (rc = eimListRegistryAliases(&handle,

 "MyRegistry",

 1000,

 list,

 err)))

 {

 printf("List registry aliases error = %d\n", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 rc = eimDestroyHandle(&handle, err);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimRegistryAlias * entry;

eimListRegistryAliases

328 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimRegistryAlias *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 /* Print out results */

 printListData("Registry Alias Type",

 entry,

 offsetof(EimRegistryAlias, type));

 printListData("Registry Alias Value",

 entry,

 offsetof(EimRegistryAlias, value));

 /* advance to next entry */

 entry = (EimRegistryAlias *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

eimListRegistryAliases

Chapter 11. EIM APIs 329

eimListRegistryAssociations

Purpose

Lists association information for the registry or domain.

Format

#include <eim.h>

int eimListRegistryAssociations(EimHandle * eim,

 enum EimAssociationType associationType,

 char * registryName,

 char * registryUserName,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle returned by a previous call to eimCreateHandle(). A

valid connection is required for this function.

assocationType

(Input) The type of associations to be listed. Valid values are:

EIM_ALL_ASSOC (0)

List all associations.

EIM_TARGET (1)

List target associations. If this type is chosen, the following fields are

returned:

v registryName

v registryUserName

v identifier

v targetMappingLookupStatus

Source associations found return the fields described under

EIM_SOURCE and target associations found will return the fields listed

under EIM_TARGET.

EIM_SOURCE (2)

List source associations. If this type is chosen, the following fields are

returned:

v registryName

v registryUserName

v identifier

v sourceMappingLookupStatus

EIM_SOURCE_AND_TARGET (3)

List source and target associations. Source associations found will

return the fields described under EIM_SOURCE, and target

associations found will return the fields listed under EIM_TARGET

EIM_ADMIN (4)

List administrative associations. If this type is chosen, the following

fields are returned:

v registryName

v registryUserName

eimListRegistryAssociations

330 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

v identifier

EIM_ALL_POLICY_ASSOC (5)

List all policy associations. This returns all of the following policy

associations: EIM_CERT_FILTER_POLICY,

EIM_DEFAULT_REG_POLICY, EIM_DEFAULT_DOMAIN_POLICY, and

EIM_DEFAULT_DOMAIN_POLICY.

EIM_CERT_FILTER_POLICY (6)

List certificate filter policy associations. If this type is chosen, the

following fields are returned:

v registryName

v registryUserName

v sourceRegistry

v filterValue

v domainPolicyAssocStatus

v sourceMappingLookupStatus

v targetMappingLookupStatus

v targetPolicyAssocStatus

EIM_DEFAULT_REG_POLICY (7)

List default registry policy associations. If this type is chosen, the

following fields are returned:

v registryName

v registryUserName

v sourceRegistry

v domainPolicyAssocStatus

v sourceMappingLookupStatus

v targetMappingLookupStatus

v targetPolicyAssocStatus

EIM_DEFAULT_DOMAIN_POLICY (8)

List default domain policy associations. If this type is chosen, the

following fields are returned:

v registryName

v registryUserName

v domainPolicyAssocStatus

v targetMappingLookupStatus

v targetPolicyAssocStatus

registryName

(Input) The name of the registry for which to list association information.

registryUserName

(Input) The name of the registry user name for which to list association

information.

lengthOfListData

(Input) The number of bytes provided by the caller for the listData parameter. If

the value of bytesReturned is less than bytesAvailable in the returned listData

structure, you can use this number as the bytesAvailable size, update the

lengthOfListData parameter, and reissue the API to retrieve the data. The

minimum size is 20 bytes.

eimListRegistryAssociations

Chapter 11. EIM APIs 331

listData

(Output) A pointer to the EimList structure, which contains information about the

returned data. The API will return as much data as space has allowed. The data

returned is a linked list of EimRegistryAssociation structures. The EimList

structure follows:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

The EimRegistryAssociation structure follows:

 typedef struct EimRegistryAssociation

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 enum EimAssociationType type; /* Type of association. */

 EimListData registryName; /* Registry name the association

 is defined to. */

 EimListData registryUserName; /* Registry user name the

 association is defined to. */

 EimListData identifier; /* Unique name for eim identifier.*/

 EimListData sourceRegistry; /* Source registry name the

 association is defined for. */

 EimListData filterValue; /* Filter value. */

 enum EimPolicyStatus domainPolicyAssocStatus;

 /* Policy association status for the domain:

 0 = not enabled

 1 = enabled */

 enum EimPolicyStatus sourceMappingLookupStatus;

 /* Mapping lookup status for the

 source registry:

 0 = not enabled

 1 = enabled */

 enum EimPolicyStatus targetMappingLookupStatus;

 /* Mapping lookup status for the

 target registry:

 0 = not enabled

 1 = enabled */

 enum EimPolicyStatus targetPolicyAssocStatus;

 /* Policy association status for

 the target registry:

 0 = not enabled

 1 = enabled */

 } EimRegistryAssociation;

The EimListData structure follows:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

eimListRegistryAssociations

332 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimAddPolicyAssociation” on page 183

v “eimAddAssociation” on page 174

v “eimGetAssociatedIdentifiers” on page 254

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

v EIM registries administrator

v EIM identifiers administrator

v EIM mapping lookup

v EIM authority to an individual registry

The returned list contains only the information that the user has authority to

access, meaning it could be empty.

z/OS authorization

No special authorization is needed.

Return Values

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) (z/OS does not return this value.) Insufficient access to

EIM data.

EBADDATA eimrc is not valid.

EBADNAME Registry name is not valid or insufficient access to EIM data..

EIMERR_NOREG (28) EIM registry not found or insufficient access to EIM

data.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

eimListRegistryAssociations

Chapter 11. EIM APIs 333

Return Value Meaning

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_ASSOC_TYPE_INVAL (4)

Association type is not valid.

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least

20 bytes in length.

EIMERR_FUNCTION_NOT_SUPPORTED (70)

The specified or configured EIM Domain controller

does not support this API.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

EIMERR_UNEXP_OBJ_VIOLATION (56)

Unexpected object violation.

Example

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

void printAssociationType(int type);

void printStatus(char * fieldname, enum EimStatus status);

void printListResults(EimList * list);

void printListData(char * fieldName, void * entry, int offset);

int main (int argc, char *argv[])

{

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 char listData[4000];

 EimList * list = (EimList *)listData;

eimListRegistryAssociations

334 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

EimConnectInfo con;

 char * ldapHost =

 "ldap://localhost:389/ibm-eimDomainName=MyDomain,o=MyCompany,c=us";

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=administrator";

 con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* Create handle with specified LDAP URL */

 if (0 != (rc = eimCreateHandle(&handle, ldapHost, err))) {

 printf("Create handle error = %d\n", rc);

 return -1;

 }

 /* Connect with specified credentials */

 if (0 != (rc = eimConnect(&handle, con, err))) {

 printf("Connect error = %d\n", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* Get all Policy Associations */

 if (0 != (rc = eimListRegistryAssociations(&handle,

 EIM_ALL_POLICY_ASSOC,

 NULL,

 NULL,

 4000,

 list,

 err)))

 {

 printf("List EIM Registry Associations error = %d", rc);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimRegistryAssociation * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimRegistryAssociation *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

eimListRegistryAssociations

Chapter 11. EIM APIs 335

/* Print out results */

 printAssociationType(entry->type);

 printListData("Registry Name",

 entry,

 offsetof(EimRegistryAssociation, registryName));

 printListData("Registry User Name",

 entry,

 offsetof(EimRegistryAssociation, registryUserName));

 printListData("EIM Identifier",

 entry,

 offsetof(EimRegistryAssociation, identifier));

 if (entry->type != EIM_DEFAULT_DOMAIN_POLICY) {

 printListData("Source Registry",

 entry,

 offsetof(EimRegistryAssociation, sourceRegistry));

 }

 if (entry->type == EIM_CERT_FILTER_POLICY) {

 printListData("Filter Value",

 entry,

 offsetof(EimRegistryAssociation, filterValue));

 }

 printStatus("Domain policy association status",

 entry->domainPolicyAssocStatus);

 if (entry->type != EIM_DEFAULT_DOMAIN_POLICY) {

 printStatus("Source registry mapping lookup status",

 entry->sourceMappingLookupStatus);

 }

 printStatus("Target registry mapping lookup status",

 entry->targetMappingLookupStatus);

 printStatus("Target registry policy association status",

 entry->targetPolicyAssocStatus);

 /* advance to next entry */

 /*entry += entry->nextEntry;*/

 entry = (EimRegistryAssociation *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printAssociationType(int type)

{

 switch(type)

 {

 case EIM_TARGET:

 printf(" Target Association.\n");

 break;

 case EIM_SOURCE:

 printf(" Source Association.\n");

 break;

 case EIM_ADMIN:

 printf(" Administrative Association.\n");

 break;

 case EIM_CERT_FILTER_POLICY:

 printf(" Certificate Filter Policy Association.\n");

 break;

 case EIM_DEFAULT_REG_POLICY:

 printf(" Default Registry Policy Association.\n");

 break;

 case EIM_DEFAULT_DOMAIN_POLICY:

 printf(" Default Domain Policy Association.\n");

 break;

 default:

 printf("ERROR - unknown policy association type(%d).\n", type);

 break;

 }

}

void printStatus(char * fieldName,

eimListRegistryAssociations

336 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

enum EimStatus status)

{

 printf(" %s = ",fieldName);

 switch(status)

 {

 case EIM_STATUS_NOT_ENABLED:

 printf(" Not enabled.\n");

 break;

 case EIM_STATUS_ENABLED:

 printf(" Enabled.\n");

 break;

 default:

 printf("ERROR - unknown status value.\n");

 break;

 }

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

eimListRegistryAssociations

Chapter 11. EIM APIs 337

eimListRegistryUsers

Purpose

Lists the users in a particular registry that have target associations defined.

Format

#include <eim.h>

int eimListRegistryUsers(EimHandle * eim,

 char * registryName,

 char * registryUserName,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

registryName

(Input) The name of the registry that contains this user. Registry names are

case-independent (meaning, not case-sensitive).

 The following special characters are not allowed in registry names:

, = + < > # ; \ *

registryUserName

(Input) The name of the user to list in this registry. NULL indicates listing all

users. The registry user name should begin with a non-blank character.

lengthOfListData

(Input) The number of bytes the caller provides for the listData parameter. If the

value of bytesReturned is less than bytesAvailable in the returned listData

structure, you can use this number as the bytesAvailable size, update the

lengthOfListData parameter, and reissue the API to retrieve the data. The

minimum size required is 20 bytes.

listData

(Output) A pointer to the EimList structure. The EimList structure contains

information about the returned data. The data returned is a linked list of

EimRegistryUser structures. The firstEntry field in the EimList structure is used

to get to the first EimRegistryUser structure in the linked list. The number of

completed EimRegistryUser structures is returned in entriesReturned. The

bytesReturned variable has the number of bytes the API used for the returned

entries. If the number of entries returned is less than the number of entries

available, the returned data contains as many complete EimRegistryUser

structures as will fit. It can also contain a partial EimRegistryUser structure.The

EimList structure follows:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

eimListRegistryUsers

338 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

The EimRegistryUser structure follows:

 typedef struct EimRegistryUser

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure. */

 EimListData registryUserName; /* Name */

 EimListData description; /* Description */

 EimSubList additionalInfo; /* EimAddlInfo sublist */

 } EimRegistryUser;

Registry users might have defined several additional attributes. In the

EimRegistryUser structure, additionalInfo gives addressability to the first

EimAddlInfo structure that contains a linked list of attributes. The EimAddlInfo

structure follows:

 typedef struct EimAddlInfo

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure. */

 EimListData addlInfo; /* Additional info */

 } EimAddlInfo;

The EimSubList structure follows:

 typedef struct EimSubList

 {

 unsigned int listNum; /* Number of entries in the list */

 unsigned int disp; /* Displacement to sublist. This

 byte offset is relative to the

 start of the parent structure, i.e.

 the structure containing this

 structure. */

 } EimSubList;

The EimListData structure follows:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure, i.e. the

 structure containing this

 structure. */

 } EimListData;

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

eimListRegistryUsers

Chapter 11. EIM APIs 339

Related Information

See the following:

v “eimChangeRegistryUser” on page 211

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

v EIM registries administrator

v EIM identifiers administrator

v EIM registry X administrator

v EIM mapping lookup

The list returned contains only the information that the user has authority to

access.

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful. Check the entriesReturned member of the listData to determine if

any entries were returned.

EACCES Access denied. Not enough permissions to access data.

EBADDATA eimrc is not valid.

EBADNAME Registry not found or insufficient access to EIM data.

EIMERR_NOREG (28) EIM registry not found or insufficient access to EIM

data.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

eimListRegistryUsers

340 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Value Meaning

EINVAL Input parameter was not valid.

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least

20 bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNEXP_OBJ_VIOLATION (56)

Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example lists all users in the specified registry:

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printSubListData(char * fieldName, void * entry, int offset);

void printListData(char * fieldName, void * entry, int offset);

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 EimConnectInfo con;

 char * ldapHost =

 "ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

 char listData[1000];

 EimList * list = (EimList *) listData;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=admin";

eimListRegistryUsers

Chapter 11. EIM APIs 341

con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* Create handle with specified LDAP URL */

 if (0 != (rc = eimCreateHandle(&handle,

 ldapHost,

 err))) {

 printf("Create handle error = %d\n", rc);

 return -1;

 }

 /* Connect with specified credentials */

 if (0 != (rc = eimConnect(&handle,

 con,

 err))) {

 printf("Connect error = %d\n", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* Get registry user */

 if (0 != (rc = eimListRegistryUsers(&handle,

 "MyRegistry",

 NULL,

 1000,

 list,

 err)))

 {

 printf("List registry users error = %d\n", rc);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 /* Destroy the handle */

 rc = eimDestroyHandle(&handle, err);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimRegistryUser * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimRegistryUser *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Print out results */

 printListData("Registry user name",

 entry,

 offsetof(EimRegistryUser, registryUserName));

 printListData("description",

 entry,

eimListRegistryUsers

342 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

offsetof(EimRegistryUser, description));

 printSubListData("Additional information",

 entry,

 offsetof(EimRegistryUser, additionalInfo));

 /* advance to next entry */

 entry = (EimRegistryUser *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printSubListData(char * fieldName, void * entry, int offset)

{

 int i;

 EimSubList * subList;

 EimAddlInfo * subentry;

 /* Address the EimSubList object */

 subList = (EimSubList *)((char *)entry + offset);

 if (subList->listNum > 0)

 {

 subentry = (EimAddlInfo *)((char *)entry + subList->disp);

 for (i = 0; i < subList->listNum; i++)

 {

 /* Print out results */

 printListData(fieldName,

 subentry,

 offsetof(EimAddlInfo, addlInfo));

 /* advance to next entry */

 subentry = (EimAddlInfo *)((char *)subentry +

 subentry->nextEntry);

 }

 }

}

void printListData(char * fieldName, void * entry, int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

eimListRegistryUsers

Chapter 11. EIM APIs 343

eimListUserAccess

Purpose

Lists the access groups of which the given user is a member.

Format

#include <eim.h>

int eimListUserAccess(EimHandle * eim,

 EimAccessUser * accessUser,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

accessUser

(Input) A structure that contains the user information for which to retrieve

access.

EIM_ACCESS_DN Indicates a distinguished name defined in an

LDAP directory that can be used to bind to the

EIM domain.

EIM_ACCESS_LOCAL_USER

(z/OS does not support this; for RACF user IDs,

use EIM_ACCESS_DN instead.)

EIM_ACCESS_LOCAL_USER indicates a local

user name on the system where the API runs.

EIM converts the local user name to the

appropriate access ID for this system.

EIM_ACCESS_KERBEROS Indicates a Kerberos principal. EIM converts the

Kerberos principal to the appropriate access ID,

for example, converting petejones@therealm to

ibm-kn=petejones@threalm.

The EimAccessUser structure layout follows:

 enum EimAccessUserType {

 EIM_ACCESS_DN,

 EIM_ACCESS_KERBEROS,

 EIM_ACCESS_LOCAL_USER

 };

 typedef struct EimAccessUser

 {

 union {

 char * dn;

 char * kerberosPrincipal;

 char * localUser;

 } user;

 enum EimAccessUserType userType;

 } EimAccessUser;

eimListUserAccess

344 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

lengthOfListData

(Input) The number of bytes the caller provides for the listData parameter. If the

value of bytesReturned is less than bytesAvailable in the returned listData

structure, you can use this number as the bytesAvailable size, update the

lengthOfListData parameter, and reissue the API to retrieve the data. The

minimum size required is 20 bytes.

listData

(Output) A pointer to the EimList structure. The EimList structure contains

information about the returned data. The data returned is a linked list of

EimUserAccess structures. The firstEntry field in the EimList structure is used to

get to the first EimUserAccess structure in the linked list. The number of

completed EimUserAccess structures is returned in entriesReturned. The

bytesReturned variable has the number of bytes the API used for the returned

entries. If the number of entries returned is less than the number of entries

available, the returned data contains as many complete EimUserAccess

structures as will fit. It can also contain a partial EimUserAccess structure, but

not a partial entry.The EimList structure follows:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API. */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API. */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API. */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API. */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

The EimUserAccess structure follows:

 typedef struct EimUserAccess

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure. */

 enum EimAccessIndicator eimAdmin;

 enum EimAccessIndicator eimRegAdmin;

 enum EimAccessIndicator eimIdenAdmin;

 enum EimAccessIndicator eimMappingLookup;

 EimSubList registries; /* EimRegistryName sublist */

 } EimUserAccess;

The registries EimSubList gives addressability to a linked list of

EimRegistryName structures. The EimRegistryName structure follows:

 typedef struct EimRegistryName

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure. */

 EimListData name; /* Name */

 } EimRegistryName;

The EimSubList structure follows:

eimListUserAccess

Chapter 11. EIM APIs 345

typedef struct EimSubList

 {

 unsigned int listNum; /* Number of entries in the list */

 unsigned int disp; /* Displacement to sublist. This

 byte offset is relative to the

 start of the parent structure, i.e.

 the structure containing this

 structure. */

 } EimSubList;

The EimListData structure follows:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure, i.e. the

 structure containing this

 structure. */

 } EimListData;

eimrc

(Input) The structure in which to return error code information. If the return

value is not 0, EIM sets eimrc with additional information. This parameter can

be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimAddAccess” on page 166

v “eimListAccess” on page 286

v “eimRemoveAccess” on page 355

v “eimQueryAccess” on page 351

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

The list returned contains only the information that the user has authority to

access.

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EBADDATA eimrc is not valid.

eimListUserAccess

346 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Value Meaning

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_ACCESS_USERTYPE_INVAL (3)

Access user type is not valid.

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least

20 bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example will list the access for the user with distinguished name

″cn=pete,o=ibm,c=us″.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printSubListData(char * fieldName, void * entry, int offset);

void printListData(char * fieldName, void * entry, int offset);

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 EimAccessUser user;

 EimConnectInfo con;

 char listData[1000];

eimListUserAccess

Chapter 11. EIM APIs 347

EimList * list = (EimList *) listData;

 char * ldapHost =

 "ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=admin";

 con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* Create handle with specified LDAP URL */

 if (0 != (rc = eimCreateHandle(&handle,

 ldapHost,

 err))) {

 printf("Create handle error = %d\n", rc);

 return -1;

 }

 /* Connect with specified credentials */

 if (0 != (rc = eimConnect(&handle,

 con,

 err))) {

 printf("Connect error = %d\n", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* Set up access user information */

 user.userType = EIM_ACCESS_DN;

 user.user.dn = "cn=pete,o=ibm,c=us";

 /* Get user accesses */

 if (0 != (rc = eimListUserAccess(&handle,

 &user,

 1000,

 list,

 err)))

 {

 printf("List user access error = %d\n", rc);

 eimDestroyHandle(&handle, err);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 /* Destroy the handle */

 rc = eimDestroyHandle(&handle, err);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimUserAccess * entry;

 EimListData * listData;

 EimRegistryName * registry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

eimListUserAccess

348 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 if (list->entriesReturned > 1)

 printf("Unexpected number of entries returned.\n");

 entry = (EimUserAccess *)((char *)list + list->firstEntry);

 if (EIM_ACCESS_YES == entry->eimAdmin)

 printf(" EIM Admin.\n");

 if (EIM_ACCESS_YES == entry->eimRegAdmin)

 printf(" EIM Reg Admin.\n");

 if (EIM_ACCESS_YES == entry->eimIdenAdmin)

 printf(" EIM Iden Admin.\n");

 if (EIM_ACCESS_YES == entry->eimMappingLookup)

 printf(" EIM Mapping Lookup.\n");

 printf(" Registries:\n");

 printSubListData("Registry names",

 entry,

 offsetof(EimUserAccess, registries));

 printf("\n");

}

void printSubListData(char * fieldName, void * entry, int offset)

{

 int i;

 EimSubList * subList;

 EimRegistryName * subentry;

 /* Address the EimSubList object */

 subList = (EimSubList *)((char *)entry + offset);

 if (subList->listNum > 0)

 {

 subentry = (EimRegistryName *)((char *)entry + subList->disp);

 for (i = 0; i < subList->listNum; i++)

 {

 /* Print out results */

 printListData(fieldName,

 subentry,

 offsetof(EimRegistryName, name));

 /* advance to next entry */

 subentry = (EimRegistryName *)((char *)subentry +

 subentry->nextEntry);

 }

 }

}

void printListData(char * fieldName, void * entry, int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

eimListUserAccess

Chapter 11. EIM APIs 349

printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

eimListUserAccess

350 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimQueryAccess

Purpose

Queries to check if the user has the specified access.

Format

#include <eim.h>

int eimQueryAccess(EimHandle * eim,

 EimAccessUser * accessUser,

 enum EimAccessType accessType,

 char * registryName,

 unsigned int * accessIndicator,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

accessUser

(Input) A structure that contains the user information for which to query access.

EIM_ACCESS_DN Indicates a distinguished name defined in an

LDAP directory that you can use to bind to the

EIM domain.

EIM_ACCESS_LOCAL_USER

(z/OS does not support this. Use

EIM_ACCESS_DN instead.) It indicates a local

user name on the system where the API runs.

The local user name is converted to the

appropriate access ID for this system.

EIM_ACCESS_KERBEROS Indicates a Kerberos identity. The Kerberos

identity is converted to the appropriate access

ID. For example, EIM converts

petejones@therealm to ibm-
kn=petejones@threalm.

The EimAccessUser structure layout follows:

 enum EimAccessUserType {

 EIM_ACCESS_DN,

 EIM_ACCESS_KERBEROS,

 EIM_ACCESS_LOCAL_USER

 };

 typedef struct EimAccessUser

 {

 union {

 char * DN;

 char * kerberosPrincipal;

 char * localUser;

 } user;

 enum EimAccessUserType userType;

 } EimAccessUser;

eimQueryAccess

Chapter 11. EIM APIs 351

accessType

(Input) The type of access to check. Valid values are:

EIM_ACCESS_ADMIN (0) Administrative authority to the entire EIM

domain.

EIM_ACCESS_REG_ADMIN (1)

Administrative authority to all registries in the

EIM domain.

EIM_ACCESS_REGISTRY (2)

Administrative authority to the registry specified

in the registryName parameter.

EIM_ACCESS_IDENTIFIER_ADMIN (3)

Administrative authority to all of the identifiers in

the EIM domain.

EIM_ACCESS_MAPPING_LOOKUP (4)

Authority to perform mapping lookup

operations.

registryName

(Input) The name of the EIM registry for which to check the access. Registry

names are case-independent (not case-sensitive). This parameter is used only

if accessType is EIM_ACCESS_REGISTRY. If accessType is anything other

than EIM_ACCESS_REGISTRY, this parameter must be NULL.

 The following special characters are not allowed in registry names:

, = + < > # ; \ *

accessIndicator

(Output) Indicates whether access is found.

EIM_ACCESS_NO (0) Access not found.

EIM_ACCESS_YES (1) Access found.

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimAddAccess” on page 166

v “eimListAccess” on page 286

v “eimListUserAccess” on page 344

v “eimRemoveAccess” on page 355

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

eimQueryAccess

352 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EBADDATA eimrc is not valid.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_ACCESS_TYPE_INVAL (2)

Access type is not valid.

EIMERR_ACCESS_USERTYPE_INVAL (3)

Access user type is not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_REG_MUST_BE_NULL (55)

Registry name must be NULL when access type is not

EIM_ACCESS_REGISTRY.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following illustrates a query to see if the distinguished name

″cn=pete,o=ibm,c=us″ is a member of the ″EIM Administrator″ access group.

eimQueryAccess

Chapter 11. EIM APIs 353

#include <eim.h>

.

 .

 .

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 EimAccessUser user;

 unsigned int indicator;

 .

 .

 .

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 .

 .

 .

 /* Set up access user info */

 user.userType = EIM_ACCESS_DN;

 user.user.DN="cn=pete,o=ibm,c=us";

 /* Query access for this user. */

 rc = eimQueryAccess(&handle,

 &user,

 EIM_ACCESS_ADMIN,

 NULL,

 &indicator,

 err);

 .

 .

 .

eimQueryAccess

354 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimRemoveAccess

Purpose

Removes the user from an EIM access group.

Format

#include <eim.h>

int eimRemoveAccess(EimHandle * eim,

 EimAccessUser * accessUser,

 enum EimAccessType accessType,

 char * registryName,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

accessUser

(Input) A structure that contains the user information from which to remove

access.

EIM_ACCESS_DN Indicates a distinguished name defined in an

LDAP directory that you can use to bind to the

EIM domain.

EIM_ACCESS_LOCAL_USER

(z/OS does not support this. Use

EIM_ACCESS_DN instead.) It indicates a local

user name on the system where the API runs.

The local user name is converted to the

appropriate access ID for this system.

EIM_ACCESS_KERBEROS Indicates a Kerberos identity. The Kerberos

identity is converted to the appropriate access

ID. For example, EIM converts

petejones@therealm to ibm-
kn=petejones@threalm.

The EimAccessUser structure layout follows:

 enum EimAccessUserType {

 EIM_ACCESS_DN,

 EIM_ACCESS_KERBEROS,

 EIM_ACCESS_LOCAL_USER

 };

 typedef struct EimAccessUser

 {

 union {

 char * DN;

 char * kerberosPrincipal;

 char * localUser;

 } user;

 enum EimAccessUserType userType;

 } EimAccessUser;

eimRemoveAccess

Chapter 11. EIM APIs 355

accessType

(Input) The type of access to remove. Valid values are:

EIM_ACCESS_ADMIN (0) Administrative authority to the entire EIM

domain.

EIM_ACCESS_REG_ADMIN (1)

Administrative authority to all registries in the

EIM domain.

EIM_ACCESS_REGISTRY (2)

Administrative authority to the registry specified

in the registryName parameter.

EIM_ACCESS_IDENTIFIER_ADMIN (3)

Administrative authority to all of the identifiers in

the EIM domain.

EIM_ACCESS_MAPPING_LOOKUP (4)

Authority to perform mapping lookup

operations.

registryName

(Input) The name of the registry from which to remove access. Registry names

are case-independent (meaning, not case-sensitive). This parameter is used

only if accessType is EIM_ACCESS_REGISTRY. If accessType is anything

other than EIM_ACCESS_REGISTRY, this parameter must be NULL.

 The following special characters are not allowed in registry names:

, = + < > # ; \ *

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimAddAccess” on page 166

v “eimListAccess” on page 286

v “eimListUserAccess” on page 344

v “eimQueryAccess” on page 351

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

z/OS authorization

No special authorization is needed.

eimRemoveAccess

356 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_ACCESS_TYPE_INVAL (2)

Access type is not valid.

EIMERR_ACCESS_USERTYPE_INVAL (3)

Access user type is not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_REG_MUST_BE_NULL (55)

Registry name must be NULL when access type is not

EIM_ACCESS_REGISTRY.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EROFS LDAP connection is for read-only. Need to connect to master.

EIMERR_READ_ONLY (36) This LDAP connection has ″read-only″ access. A

connection to the master LDAP server with read/write

is required to complete the operation. Use the

eimConnectToMaster API to get a write connection.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

eimRemoveAccess

Chapter 11. EIM APIs 357

Example

The following illustrates removing the distinguished name(DN) of a user from the

EIM Administror access group:

#include <eim.h>

.

 .

 .

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 EimAccessUser user;

 .

 .

 .

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 .

 .

 .

 /* Set user information */

 user.userType = EIM_ACCESS_DN;

 user.user.DN="cn=pete,o=ibm,c=us";

 /* Remove access for this user. */

 rc = eimRemoveAccess(&handle,

 &user,

 EIM_ACCESS_ADMIN,

 NULL,

 err);

 .

 .

 .

eimRemoveAccess

358 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimRemoveAssociation

Purpose

Removes an association for a user in a specified user registry with an EIM

identifier.

Format

#include <eim.h>

int eimRemoveAssociation(EimHandle * eim,

 enum EimAssociationType associationType,

 EimIdentifierInfo * idName,

 char * registryName,

 char * registryUserName,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

associationType

(Input) The type of association to remove. Valid values are:

EIM_ALL_ASSOC (0) Remove all associations.

EIM_TARGET (1) Remove a target association.

EIM_SOURCE (2) Remove a source association.

EIM_SOURCE_AND_TARGET (3)

Remove both a source association and a target

association.

EIM_ADMIN (4) Remove an administrative association.

idName

(Input) A structure that contains the identifier name from which to remove this

association. The layout of the EimIdentifierInfo structure follows:

 enum EimIdType {

 EIM_UNIQUE_NAME,

 EIM_ENTRY_UUID,

 EIM_NAME

 };

 typedef struct EimIdentifierInfo

 {

 union {

 char * uniqueName;

 char * entryUUID;

 char * name;

 } id;

 enum EimIdType idtype;

 } EimIdentifierInfo;

idtype

The idtype in the EimIdentifierInfo structure indicates which identifier name

has been provided. EIM_UNIQUE_NAME finds at most one matching

eimRemoveAssociation

Chapter 11. EIM APIs 359

identifier. EIM_NAME results in an error if your EIM domain has more than

one identifier containing the same name.

registryName

(Input) The registry name. Registry names are case-independent (meaning, not

case-sensitive).

 The following special characters are not allowed in registry names:

, = + < > # ; \ *

registryUserName

(Input) The registry user name. This can be normalized according to the

normalization method for defined registry. The registry user name should begin

with a non-blank character.

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimAddAssociation” on page 174

v “eimGetAssociatedIdentifiers” on page 254

v “eimListAssociations” on page 291

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The authority that the access group has to the

EIM data depends on the type of association being removed.

 For administrative and source associations, the access groups whose

members have authority to the EIM data for this API follow:

v EIM Administrator

v EIM identifiers administrator

For target associations, the access groups whose members have authority

to the EIM data for this API follow:

v EIM Administrator

v EIM registries administrator

v EIM registry X administrator

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

eimRemoveAssociation

360 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Value Meaning

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

EBADNAME Registry or identifier name is not valid or insufficient access to EIM data.

EIMERR_IDNAME_AMBIGUOUS (20)

More than one EIM identifier was found that matches

the requested identifier name.

EIMERR_NOIDENTIFIER (25) EIM identifier not found or insufficient access to EIM

data.

EIMERR_NOREG (28) EIM registry not found or insufficient access to EIM

data.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_ASSOC_TYPE_INVAL (4)

Association type is not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_IDNAME_TYPE_INVAL (52)

The EimIdType value is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EMVSERR An MVS environment or internal error has occurred.

EIMERR_ZOS_DATA_CONVERSION (6011)

Error occurred when converting data between code

pages.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EROFS LDAP connection is for read-only. Need to connect to master.

EIMERR_READ_ONLY (36) This LDAP connection has ″read-only″ access. A

connection to the master LDAP server with read/write

is required to complete the operation. Use the

eimConnectToMaster API to get a write connection.

eimRemoveAssociation

Chapter 11. EIM APIs 361

Return Value Meaning

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNEXP_OBJ_VIOLATION (56)

Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following illustrates remoing an administrative, source, and target association

for a specified identifier:

#include <eim.h>

#include <stdio.h>

.

 .

 .

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 EimIdentifierInfo x;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 .

 .

 .

 /* Set up identifier information. */

 x.idtype = EIM_UNIQUE_NAME;

 x.id.uniqueName = "mjones";

 /* Remove an Admin association */

 rc = eimRemoveAssociation(&handle,

 EIM_ADMIN,

 &x,

 "MyRegistry",

 "maryjones",

 err);

 .

 .

 .

 /* Remove a source association */

 rc = eimRemoveAssociation(&handle,

 EIM_SOURCE,

 &x,

 "kerberosRegistry",

 "mjjones",

 err);

 .

 .

 .

 /* Remove a target association */

 rc = eimRemoveAssociation(&handle,

 EIM_TARGET,

 &x,

 "MyRegistry",

 "maryjo",

eimRemoveAssociation

362 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

err);

 .

 .

 .

eimRemoveAssociation

Chapter 11. EIM APIs 363

eimRemoveIdentifier

Purpose

Removes an EIM identifier and all of its associated mappings from the EIM domain.

Format

#include <eim.h>

int eimRemoveIdentifier(EimHandle * eim,

 EimIdentifierInfo * idName,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

idName

(Input) A structure that contains the name for this identifier. EIM_NAME returns

either one matching identifier or an error if your EIM domain has more than one

identifier with the same non-unique name. The layout of the EimIdentifierInfo

structure follows:

 enum EimIdType {

 EIM_UNIQUE_NAME,

 EIM_ENTRY_UUID,

 EIM_NAME

 };

 typedef struct EimIdentifierInfo

 {

 union {

 char * uniqueName;

 char * entryUUID;

 char * name;

 } id;

 enum EimIdType idtype;

 } EimIdentifierInfo;

idtype

The idtype in the EimIdentifierInfo structure indicates which identifier name

has been provided. EIM_UNIQUE_NAME finds at most one matching

identifier. EIM_NAME results in an error if your EIM domain has more than

one identifier containing the same name.

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimAddIdentifier” on page 179

v “eimChangeIdentifier” on page 199

v “eimGetAssociatedIdentifiers” on page 254

eimRemoveIdentifier

364 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

v “eimListIdentifiers” on page 305

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

EBADNAME Identifier not found or insufficient access to EIM data.

EIMERR_IDNAME_AMBIGUOUS (20)

More than one EIM identifier was found that matches

the requested identifier name.

EIMERR_NOIDENTIFIER (25) EIM identifier not found or insufficient access to EIM

data.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.)Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_IDNAME_TYPE_INVAL (52)

The EimIdType value is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

eimRemoveIdentifier

Chapter 11. EIM APIs 365

Return Value Meaning

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EROFS LDAP connection is for read-only. Need to connect to master.

EIMERR_READ_ONLY (36) This LDAP connection has ″read-only″ access. A

connection to the master LDAP server with read/write

is required to complete the operation. Use the

eimConnectToMaster API to get a write connection.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNEXP_OBJ_VIOLATION (56)

Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example illustrates removing an EIM identifier:

#include <eim.h>

int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 EimIdentifierInfo idInfo;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 .

 .

 .

 /* Set identifier information. */

 idInfo.idtype = EIM_UNIQUE_NAME;

 idInfo.id.uniqueName = "Mary Smith";

 /* Remove this identifier. */

 rc = eimRemoveIdentifier(&handle,

 &idInfo,

 err);

 .

 .

 .

eimRemoveIdentifier

366 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimRemovePolicyAssociation

Purpose

Removes the specified policy association from the domain.

Format

 #include <eim.h>

 int eimRemovePolicyAssociation(EimHandle * eim,

 EimPolicyAssociationInfo * policyAssoc,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle returned by a previous call to eimCreateHandle. A valid

connection is required for this function.

policyAssoc

 (Input) The information about the policy association to be removed. This field

must contain information specific to the type of policy association you wish to

remove. For example, for EIM_CERT_FILTER_POLICY (5) association type, the

policyAssociation field must contain an EimCertificateFilterPolicyAssociation

structure, for EIM_DEFAULT_REG_POLICY (6) association type, the

policyAssociation field must contain an EimDefaultRegistryPolicyAssociation

structure, and for EIM_DEFAULT_DOMAIN_POLICY (7) association type, the

policyAssociation field must contain an EimDefaultDomainPolicyAssociation

structure. The structure layouts follow:

 enum EimAssociationType {

 EIM_ALL_ASSOC, /* Not supported on this interface*/

 EIM_TARGET, /* Not supported on this interface*/

 EIM_SOURCE, /* Not supported on this interface*/

 EIM_SOURCE_AND_TARGET, /* Not supported on this interface*/

 EIM_ADMIN, /* Not supported on this interface*/

 EIM_ALL_POLICY_ASSOC, /* Not supported on this interface*/

 EIM_CERT_FILTER_POLICY, /* Association is a certificate

 filter policy association. */

 EIM_DEFAULT_REG_POLICY, /* Association is a default

 registry policy association */

 EIM_DEFAULT_DOMAIN_POLICY /* Policy is a default policy for

 the domain. */

 };

 typedef struct EimCertificateFilterPolicyAssociation

 {

 char * sourceRegistry; /* The source registry to remove

 the policy association from. */

 char * filterValue; /* The filter value of the policy.*/

 char * targetRegistry; /* The name of the target registry

 that the filter value is mapped

 to. */

 char * targetRegistryUserName; /* The name of the target registry

 user name that the filter value

 is mapped to. */

 } EimCertificateFilterPolicyAssociation;

 typedef struct EimDefaultRegistryPolicyAssociation

 {

 char * sourceRegistry; /* The source registry to remove

 the policy association from. */

 char * targetRegistry; /* The name of the target registry

 that the policy association is

 mapped to. */

eimRemovePolicyAssociation

Chapter 11. EIM APIs 367

char * targetRegistryUserName; /* The name of the target registry

 user name that the policy

 association is mapped to. */

 } EimDefaultRegistryPolicyAssociation;

 typedef struct EimDefaultDomainPolicyAssociation

 {

 char * targetRegistry; /* The name of the target registry

 that the policy association is

 mapped to. */

 char * targetRegistryUserName; /* The name of the target registry

 user name that the policy

 association is mapped to. */

 } EimDefaultDomainPolicyAssociation;

 typedef struct EimPolicyAssociationInfo

 {

 enum EimAssociationType type;

 union {

 EimCertificateFilterPolicyAssociation certFilter;

 EimDefaultRegistryPolicyAssociation defaultRegistry;

 EimDefaultDomainPolicyAssociation defaultDomain;

 } policyAssociation;

 } EimPolicyAssociationInfo;

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimAddPolicyAssociation” on page 183

v “eimListRegistryAssociations” on page 330

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

v EIM registries administrator

v EIM authority to an individual registry. This authority is needed to the

target registry.

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

eimRemovePolicyAssociation

368 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Value Meaning

EBADDATA eimrc is not valid.

EBADNAME Registry not found or insufficient access to EIM data.

EIMERR_NOREG (28) EIM registry not found or insufficient access to EIM

data.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_ASSOC_TYPE_INVAL (4)

Association type is not valid.

EIMERR_FUNCTION_NOT_SUPPORTED (70)

The specified or configured EIM Domain controller

does not support this API.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

EROFS LDAP connection is for read-only. Need to connect to master.

EIMERR_READ_ONLY (36) This LDAP connection has ″read-only″ access. A

connection to the master LDAP server with read/write

is required to complete this operation. Use

eimConnectToMaster to get a write connection or use

the URL for the master EIM domain controller which is

writeable..

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

EIMERR_UNEXP_OBJ_VIOLATION (56)

Unexpected object violation.

Example

#include <eim.h>

#include <string.h>

.

.

.

eimRemovePolicyAssociation

Chapter 11. EIM APIs 369

int rc;

 char eimerr[250];

 EimRC * err;

 EimHandle handle;

 EimPolicyAssociationInfo assocInfo;

 /* Set up error structure. */

 memset(eimerr,0x00,250);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 250;

.

.

.

 /* Set up policy association information */

 assocInfo.type = EIM_DEFAULT_REG_POLICY;

 assocInfo.policyAssociation.defaultRegistry.sourceRegistry = "MySourceRegistry";

 assocInfo.policyAssociation.defaultRegistry.targetRegistry = "localRegistry";

 assocInfo.policyAssociation.defaultRegistry.targetRegistryUserName = "mjjones";

 /* Remove the policy */

 rc = eimRemovePolicyAssociation(&handle, &assocInfo, err);

.

.

.

eimRemovePolicyAssociation

370 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimRemovePolicyFilter

Purpose

Removes the specified policy filter from the domain. When a policy filter is removed,

all policy associations to the policy filter are also removed.

Format

 #include <eim.h>

 int eimRemovePolicyFilter(EimHandle * eim,

 EimPolicyFilterInfo * filterInfo,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle returned by a previous call to eimCreateHandle. A valid

connection is required for this function.

filterInfo

 The information about the policy filter to be removed. The structure layout

follows:

enum EimPolicyFilterType {

 EIM_ALL_FILTERS, /* All policy filters -- not

 supported for this interface. */

 EIM_CERTIFICATE_FILTER /* Policy filter is a certificate

 filter. */

 };

 typedef struct EimCertificatePolicyFilter

 {

 char * sourceRegistry; /* The source registry to remove the

 policy filters from. */

 char * filterValue; /* The policy filter value. A NULL

 value will remove all policy

 filter values from the registry*/

 } EimCertificatePolicyFilter;

 typedef struct EimPolicyFilterInfo

 {

 enum EimPolicyFilterType type;

 union {

 EimCertificatePolicyFilter certFilter;

 } filter;

 } EimPolicyFilterInfo;

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimAddPolicyFilter” on page 187

v “eimListPolicyFilters” on page 312

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

eimRemovePolicyFilter

Chapter 11. EIM APIs 371

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

EBADNAME Registry not valid or insufficient access to EIM data.

EIMERR_NOREG (28) EIM registry not found or insufficient access to EIM

data.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_FUNCTION_NOT_SUPPORTED (70)

The specified or configured EIM Domain controller

does not support this API.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_POLICY_FILTER_TYPE_INVAL (60)

Policy filter type is not valid.

EIMERR_REGTYPE_INVAL (62) Registry type is not valid.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

eimRemovePolicyFilter

372 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Value Meaning

EROFS LDAP connection is for read-only. Need to connect to master. Use eimConnectToMaster

API to get a write connection or use the URL for the master EIM domain controller which

is writeable.

EIMERR_READ_ONLY (36) This LDAP connection has ″read-only″ access. A

connection to the master LDAP server with read/write

is required to complete this operation. Use

eimConnectToMaster to get a write connection.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

EIMERR_UNEXP_OBJ_VIOLATION (56)

Unexpected object violation.

Example

#include <eim.h>

#include <string.h>

.

.

.

 int rc;

 char eimerr[250];

 EimRC * err;

 EimHandle handle;

 EimPolicyFilterInfo filterInfo;

 /* Set up error structure. */

 memset(eimerr,0x00,250);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 250;

.

.

.

 /* Set up policy information */

 filterInfo.type = EIM_CERTIFICATE_FILTER;

 filterInfo.filter.certFilter.sourceRegistry = "MySourceRegistry";

 filterInfo.filter.certFilter.filterValue = NULL;

 /* Remove the policy filter */

 rc = eimRemovePolicyFilter(&handle, &filterInfo, err);

.

.

.

eimRemovePolicyFilter

Chapter 11. EIM APIs 373

eimRemoveRegistry

Purpose

Removes a currently participating registry from the EIM domain.

Notes:

1. You cannot remove a system registry if there are any application registries that

are a subset of the system registry.

2. When a registry is removed, an attempt is made to remove all associations for

the registry. For policy associations, this includes all policy associations where

this registry is either the source registry or the target registry. If there are any

policy filters defined for the registry, the policy filters are removed along with any

associations to the policy filters.

Format

#include <eim.h>

int eimRemoveRegistry(EimHandle * eim,

 char * registryName,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns. A valid

connection is required.

registryName

(Input) The name of the registry to remove. Registry names are

case-independent (meaning, not case-sensitive).

 The following special characters are not allowed in registry names:

, = + < > # ; \ *

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimAddApplicationRegistry” on page 170

v “eimAddSystemRegistry” on page 190

v “eimChangeRegistry” on page 203

v “eimListRegistries” on page 317

Authorization

EIM data

EIM access groups control access to EIM data. LDAP administrators also

have access to EIM data. The access groups whose members have

authority to the EIM data for this API follow:

v EIM administrator

eimRemoveRegistry

374 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA eimrc is not valid.

EBADNAME Registry not found or insufficient access to EIM data.

EIMERR_NOREG (28) EIM registry not found or insufficient access to EIM

data.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check the API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

ENOTCONN LDAP connection has not been made.

EIMERR_NOT_CONN (31) Not connected to LDAP. Use either the eimConnect or

eimConnectToMaster API and try the request again.

ENOTSAFE Cannot delete a system registry when an application registry has this system registry

defined.

EIMERR_REG_NOTEMPTY (40) Cannot delete a system registry when there is an

application registry defined for this system registry.

EROFS LDAP connection is for read-only. Need to connect to master. Use the

eimConnectToMaster API to get a write connection or use the URL for the master EIM

domain controller which is writeable.

EIMERR_READ_ONLY (36) This LDAP connection has ″read-only″ access. A

connection to the master LDAP server with read/write

is required to complete this operation. Use

eimConnectToMaster to get a write connection.

eimRemoveRegistry

Chapter 11. EIM APIs 375

Return Value Meaning

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNEXP_OBJ_VIOLATION (56)

Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example illustrates removing an EIM registry:

#include <eim.h>

 .

 .

 .

 int rc;

 char eimerr[200];

 EimRC * err;

 EimHandle handle;

 /* Set up error structure. */

 memset(eimerr,0x00,200);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 200;

 .

 .

 .

 /* Remove the registry */

 rc = eimRemoveRegistry(&handle, "MyRegistry", err);

 .

 .

 .

eimRemoveRegistry

376 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimRetrieveConfiguration

Purpose

This API retrieves the EIM configuration information for the specified or configured

profile. Although similar to other Eserver platform implemenations, the z/OS

implementation does differ is the number of parameters passed to the API, and

where and how configuration information is stored and retrieved.

Format

#include <eim.h>

int eimRetrieveConfiguration(unsigned int lengthOfEimConfig,

 EimConfig * configData,

 char * profile,

 char * userIdentity,

 int ccsid,

 EimRC * eimrc)

Parameters

lengthOfEimConfig

(Input) The number of bytes the caller provides for the configuration information.

The minimum size required is 36 bytes.

configData

(Output) A pointer to the data to return. The EimConfig structure contains

information about the returned data. The API returns as much data as space

has been provided. The EimConfig structure follows:

 typedef struct EimConfig

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API. */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API. */

 int enable; /* Flag to indicate if enabled to

 participate in EIM domain

 0 = not enabled

 1 = enabled */

 EimListData ldapURL; /* ldap URL for domain controller */

 EimListData localRegistry; /* Local system registry */

 EimListData kerberosRegistry; /* Kerberos registry */

 EimListData x509Registry; /* X.509 registry */

 EimListData profileName; /* The name of the profile

 storing the ldapURL and

 connect info */

 EimListData profClass; /* The class of the profile */

 EimListData profBindDn; /* The configured bind dn */

 EimListData profBindPw; /* The configured bind password */

} EimConfig;

Note: The actual value of the bind password is not returned by this API. If the

bind password is not set in the profile, the length of the profBindPw

returned will be zero. If set, the value returned will be YES.

The EimListData structure follows:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

eimRetrieveConfiguration

Chapter 11. EIM APIs 377

unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure, i.e. the

 structure containing this

 structure. */

 } EimListData;

profile

(Input) The name of a profile containing EIM configuration information for z/OS.

The maximum size for this name is 246 bytes. Possible values are:

NULL

a profile name

The unique name of a profile in the LDAPBIND class, the

IRR.EIM.DEFAULTS profile in the LDAPBIND class, or the

IRR.PROXY.DEFAULTS profile in the FACILITY class.

When profile and userIdentity are both NULL, the API uses the search order for

finding EIM configuration information on z/OS. The search order is:

v The LDAPBIND class profile associated with the caller’s user ID

v The IRR.EIM.DEFAULTS LDAPBIND class profile

v The IRR.PROXY.DEFAULTS FACILITY class profile

Otherwise, the information is retrieved from the specified profile. Note that if

userIdentity is specified at the same time as the profile parameter, an error is

returned since you can specify either profile or userIdentity, neither, but not

both.

userIdentity

(Input) The user identity with an associated LDAPBIND class profile. The

maximum size of this user ID is 8 bytes. Possible values are:

NULL

a user identity

The unique name of a user identity associated with an LDAPBIND class

profile.

When profile and userIdentity are both NULL, the API uses the search order for

finding EIM configuration information on z/OS. The search order is:

v The LDAPBIND class profile associated with the caller’s user identity

v The IRR.EIM.DEFAULTS LDAPBIND class profile

v The IRR.PROXY.DEFAULTS FACILITY class profile

Otherwise, the domain and bind credentials are retrieved from the LDAPBIND

class profile associated with the user identity.

The profile parameter must be NULL when userIdentity is used.

ccsid

(Input) The coded character set identifier (CCSID) for the output data. This

parameter is ignored.

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

eimRetrieveConfiguration

378 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Related Information

See the following:

v “eimSetConfiguration” on page 385

Authorization

z/OS authorization

The user identity associated with the application must have one of the

following RACF authorities:

v SPECIAL

v CLAUTH authority to the FACILITY and LDAPBIND classes with

field-level access checking set up for the fields in the PROXY and EIM

segments of both classes.

See the RACF System Administrator’s Guide for details on how to grant

user identities these authorities.

 The calling application can be running in system key or supervisor state or

one of the following:

v The RACF user ID of the caller’s address space has READ authority to

the BPX.SERVER profile in the FACILITY class

v The current RACF user ID has READ authority to the

IRR.RGETINFO.EIM profile in the FACILITY class

The FACILITY class must be active and RACLISTed before unauthorized

(problem program state and keys) will be granted the authority to use this

SAF service.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EBADDATA eimrc is not valid.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value) Error occurred when

converting data between code pages.

EINVAL Input parameter was not valid.

EIMERR_CCSID_INVAL (8) (z/OS does not return this value) CCSID is outside of

valid range or CCSID is not supported.

EIMERR_CONFIG_SIZE (10) Length of EimConfig is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API

documentation.

EIMERR_PTR_INVAL (35) (z/OS does not return this value) Pointer parameter is

not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

EIMERR_USERID_INVAL(6019) User identity does not exist.

eimRetrieveConfiguration

Chapter 11. EIM APIs 379

Return Value Meaning

EMVSSAFEXTRERR SAF/RACF Extract error.

EIMERR_ZOS_USER_XTR (6002)

RACROUTE REQUEST=EXTRACT error retrieving

EIM configuration from the caller’s USER profile.

EIMERR_ZOS_XTR_EIM (6003) RACROUTE REQUEST=EXTRACT error retrieving

EIM information from a RACF profile.

EIMERR_ZOS_XTR_PROXY (6005)

RACROUTE REQUEST=EXTRACT error retrieving

PROXY information from a RACF profile.

EIMERR_ZOS_R_DCEKEY (6008)

R_DCEKEY callable service failed.

EIMERR_ZOS_R_DCEKEY_BINDPW (6009)

R_DCEKEY callable service failed. Bind password is

missing.

EMVSSAF2ERR SAF/RACF error.

EIMERR_ZOS_XTR_DOMAINDN (6004)

EIM domain distinguished name is missing.

EIMERR_ZOS_XTR_LDAPHOST (6006)

PROXY LDAP host is missing.

EIMERR_ZOS_XTR_BINDDN (6007)

PROXY LDAP bind distinguished name is missing.

EIMERR_ZOS_NO_ACEE (6010) No task or address space ACEE found.

ENAMETOOLONG A parameter’s value is too long.

EIMERR_PROFILE_SIZE (6016) The profile is too long.

EIMERR_USERID_SIZE (6017) The user identity is too long.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) Unexpected LDAP error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example retrieves the configuration information and prints out the

results.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <string.h>

void printErr(EimRC *err);

void printListData(char * fieldName,

 void * entry,

 int offset);

int main (int argc, char *argv[])

{

 int rc;

 char eimerr[250];

eimRetrieveConfiguration

380 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

EimRC * err;

 char listData[4000];

 EimConfig * list = (EimConfig *)listData;

 EimListData * pwData;

 int pwLen;

 /* Set up error structure. */

 memset(eimerr,0x00,250);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 250;

 /*

 * Get configuration information using the default

 * search order.

 * (NULL userIdentity and profile parameter)

 */

 if (0 != (rc = eimRetrieveConfiguration(4000,

 list,

 NULL,

 NULL,

 0,

 err)))

 {

 /* Return RC and MSID to pinpoint any errors. */

 printf("Retrieve configuration RC = %d, MSID = %d\n",

 rc, err->messageCatalogMessageID);

 printErr(err);

 return -1;

 }

 /* Print the results */

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf("\n");

 if (0 == list->enable)

 printf("Profile is Disabled.\n");

 else

 printf("Profile is Enabled.\n");

 printListData("Profile Name",

 list,

 offsetof(EimConfig, profileName));

 printListData("Profile Class",

 list,

 offsetof(EimConfig, profClass));

 printListData("ldap URL",

 list,

 offsetof(EimConfig, ldapURL));

 printListData("local Registry",

 list,

 offsetof(EimConfig, localRegistry));

 printListData("kerberos registry",

 list,

 offsetof(EimConfig, kerberosRegistry));

 printListData("x.509 registry",

 list,

 offsetof(EimConfig, x509Registry));

 printListData("Bind distinguished name",

 list,

 offsetof(EimConfig, profBindDn));

 pwData = (EimListData *)((char *)list + offsetof(EimConfig, profBindPw));

 pwLen = pwData->length;

 if (pwLen > 0) {

 printf(" The Bind password is set\n");

 } else {

eimRetrieveConfiguration

Chapter 11. EIM APIs 381

printf(" The Bind password is NOT set\n");

 }

 return 0;

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

/* Prints out the error message associated with the EimRC err structure. */

 void printErr(EimRC *err)

 {

 char * msg = NULL;

 msg = eimErr2String(err);

 printf(" ldaperr = %d\n", err->ldapError);

 printf(" msg = \"%s\"\n",msg);

 free(msg);

 return;

 }

eimRetrieveConfiguration

382 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimSetAttribute

Purpose

Sets attributes in the EIM handle structure.

Format

#include <eim.h>

int eimSetAttribute(EimHandle * eim,

 enum EimHandleAttr attrName,

 void * attrValue,

 EimRC * eimrc)

Parameters

eim

(Input) The EIM handle that a previous call to eimCreateHandle returns.

attrName

(Input) The name of the attribute to set. This can be:

EIM_HANDLE_CCSID (0) (z/OS does not support this value.) This is the

CCSID of character data that the caller of the

EIM APIs passes by using the specified EIM

handle. This field is a 4-byte integer. When a

handle is created, this is set to the job default

CCSID.

attrValue

(Input) A pointer to the attribute value.

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimConnect” on page 215

v “eimConnectToMaster” on page 220

v “eimCreateHandle” on page 230

v “eimDestroyHandle” on page 239

v “eimGetAttribute” on page 261

Authorization

z/OS authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

eimSetAttribute

Chapter 11. EIM APIs 383

Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_ACCESS (1) Insufficient access to EIM data.

ENOTSUP Attribute type is not supported.

EIMERR_ATTR_NOTSUPP (6) The specified attribute is not supported.

eimSetAttribute

384 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimSetConfiguration

Purpose

This API sets configuration information for use with EIM. On z/OS, this API is not

supported and simply returns an error indicating so. To set up EIM configuration

information on z/OS, user either RACF commands or callable services or the

eimSetConfigurationExt API.

Format

#include <eim.h>

int eimSetConfiguration(int enable,

 char * ldapURL,

 char * localRegistry,

 char * kerberosRegistry,

 int ccsid,

 EimRC * eimrc)

Parameters

enable

(Input) Indicates if this system is able to establish new connections in order to

participate in an EIM domain. Possible values are:

0 Not enabled to participate in EIM domain. You cannot establish

new connections with the configured EIM domain.

non-zero Enabled to participate in EIM domain. You can establish new

connections with the EIM domain.

ldapURL

(Input) A uniform resource locator (URL) that contains the EIM configuration

information for the EIM domain controller. This information is used for all EIM

operations. The maximum size for this URL is 1000 bytes. Possible values are:

NULL A value of NULL indicates that the LDAP URL

that the system stores should not change.

EIM_CONFIG_NONE (*NONE) This value indicates that this system is

not configured for EIM.

ldapURL A URL that contains EIM domain controller

information. This URL has one of the following

formats:

 ldap://host:port/dn

host:port

Is the name of the host on which the EIM domain controller is running.

(The port number is optional.)

dn Is the distinguished name for the domain entry.

Examples:

ldap://systemx:389/ibm-eimDomainName=myEimDomain,o=myCompany,c=us

ldaps://systemy:636/ibm-eimDomainName=thisEimDomain,o=myCompany,c=us

Note: In contrast with ldap, ldaps indicates that this host and port combination

uses SSL and TLS.

eimSetConfiguration

Chapter 11. EIM APIs 385

localRegistry

(Input) The local EIM system registry name. The maximum size for this registry

name is 256 bytes. Possible values are:

NULL A value of NULL indicates that the local registry

name that the system stores should not

change.

EIM_CONFIG_NONE (*NONE) This value indicates that there is no

local system registry.

registry The local EIM system registry name.

kerberosRegistry

(Input) The EIM Kerberos registry name. The maximum size for this registry

name is 256 bytes. Possible values are:

NULL A value of NULL indicates that the EIM

Kerberos registry that the system stores should

not change.

EIM_CONFIG_NONE (*NONE) This value indicates that there is no

Kerberos registry for EIM.

registry The EIM Kerberos registry name. This is the

Kerberos realm name.

ccsid

(Input) The CCSID of the input data. If the ccsid is 0 or 65535, EIM uses the

default job CCSID.

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

None.

Authorization

No special authorization is needed.

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

EACCES Access denied. Not enough permissions to access data.

ENOTSUP Operation is not supported.

EIMERR_API_NOTSUPP (6012) The EIM API not supported.

eimSetConfiguration

386 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimSetConfigurationExt

Purpose

Sets the configuration information for use by the system. This information is stored

in profiles and retrieved by other EIM APIs, allowing an application to manage the

default domain, bind credentials, and registry names for use by the system, servers,

or administrative users from an EIM administration application instead of using SAF

services and TSO commands. If the profiles don’t exist they will be created and can

be deleted if requested.

With this API, you can do the following:

v Create, update, or delete a profile that represents the default domain and bind

credentials for the system. You can use the following profiles:

– the IRR.EIM.DEFAULTS profile in the LDAPBIND class. This is the preferred

profile to use.

– the IRR.PROXY.DEFAULTS profile in the FACILITY class. If you are already

using policy director and the EIM domain is stored in the same LDAP

directory, then this profile can be used when policy director and EIM use the

same bind information.

v Create, update, delete, or list a profile that represents the default domain and

bind credentials used by a server or EIM administrator. The profile is in the

LDAPBIND class. The API also allows you to associate the profile with the

server’s or administrator’s user ID.

v Store the registry names used in the EIM domain for the local registry, the

kerberos registry, or the x.509 registry in the IRR.PROXY.DEFAULTS profile. The

registry names are not used by EIM applications until they are brought into

storage.

Format

 #include <eim.h>

 int eimSetConfigurationExt(EimConfigInfo * configInfo,

 EimRC * eimrc)

Parameters

configInfo

 The configuration information to be set. The structure layout follows:

 enum EimConfigFormat {

 EIM_CONFIG_FORMAT_0 /* Information is in configuration

 format 0. */

 };

 typedef struct EimConfigFormat0

 {

 char * ldapURL; /* URL for EIM domain controller. */

 char * localRegistry; /* Local system registry name. */

 char * kerberosRegistry; /* Kerberos registry name. */

 char * x509Registry; /* X.509 registry name. */

 char * profile; /* Profile with EIM config info */

 char * userIdentity; /* User id */

 char * bindDn; /* Bind distinguished name */

 char * bindPw; /* Bind password */

 } EimConfigFormat0;

 typedef struct EimConfigInfo

 {

 enum EimConfigFormat format; /* Format of the config info. */

eimSetConfigurationExt

Chapter 11. EIM APIs 387

int enable; /* Indicate if able to establish

 new connections in order to

 participate in EIM domain

 0 = not enabled

 1 = enabled */

 int ccsid; /* CCSID of input data. If 0 or

 65535, default job CCSID will

 be used. */

 enum EimConfigFunc function; /* Add/Mod or Delete profile */

 union {

 EimConfigFormat0 format0;

 } config; /* Configuration information */

 } EimConfigInfo;

Details of the configuration information:

ldapURL

A uniform resource locator (URL) that contains the EIM configuration

information for the EIM domain controller. This information will be used for

all EIM operations. The maximum size for this URL on z/OS is 1024 bytes.

 Possible values are:

NULL Indicates a status that will not change.

EIM_CONFIG_NONE

(*NONE) This value indicates that this system is not configured for

EIM.

ldapURL

A URL that contains EIM domain controller information.

The ldapURL has the following format: ldap://host:port/dn or

ldaps://host:port/dn. Where:

host:port

The name of the host on which the EIM domain controller is

running with an optional port number.

dn The distinguished name for the domain entry.

ldaps Indicates that this host/port combination uses SSL and TLS.

Examples:

ldap://systemx:389/ibm-eimDomainName=myEimDomain,o=myCompany,c=us

ldaps://systemy:636/ibm-eimDomainName=thisEimDomain

The URL is broken down into components and stored in the EIM profile.

Specifying *NONE for this parameter means data in the LDAPHOST field of

the PROXY segment and the DOMAINDN field in the EIM segment will be

deleted. If the function specified is delete EIM profile (1), this parameter is

ignored.

localRegistry

The local EIM system registry name. The maximum size for this name

varies by platform, but is 255 bytes on z/OS. The possible values are:

NULL Indicates a value which should not change.

EIM_CONFIG_NONE

(*NONE) This value indicates that there is no local system registry.

registry

The local EIM system registry name.

eimSetConfigurationExt

388 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

The registry name is always stored in the EIM segment of the

IRR.PROXY.DEFAULTS profile in the FACILITY class. This parameter is

ignored when the function is delete EIM profile (1).

kerberosRegistry

The EIM Kerberos registry name. The maximum size for this name is 256

bytes. The possible values are:

NULL A value which should not change.

EIM_CONFIG_NONE

(*NONE) This value indicates that there is no kerberos registry for

EIM.

registry

The EIM Kerberos registry name.

The registry name is always stored in the EIM segment of the

IRR.PROXY.DEFAULTS profile in the FACILITY class. This parameter is

ignored when the function is delete EIM profile (1).

x509Registry

The EIM X.509 registry name. The maximum size for this name varies by

platform but is 255 bytes for z/OS. The possible values are:

NULL A value which should not change.

EIM_CONFIG_NONE

(*NONE) This value indicates that there indicates that there is no

X.509 registry for EIM..

registry

The EIM X.509 registry name. This will be used when adding

source associations for user certificates to the EIM identifier.

The registry name is always stored in the EIM segment of the

IRR.PROXY.DEFAULTS profile in the FACILITY class. This parameter is

ignored when the function is delete EIM profile (1).

function

The action to be performed on the profile. Possible values are:

EIM_CONFIG_FUNC_ADDMOD(0)

Create or update the profile containing EIM configuration data.

EIM_CONFIG_FUNC_DEL(1)

Delete the profile containing EIM configuration data.

profile

The name of a profile containing EIM configuration data. The maximum size

is 246 bytes. Possible values are:

NULL A value which should not change.

EIM_CONFIG_NONE

(*NONE) This value indicates that association of the LDAPBIND

class profile with the userIdentity should be broken.

system default profile

IRR.EIM.DEFAULTS profile in the LDAPBIND class or

IRR.PROXY.DEFAULTS profile in the FACILITY class

server or administrative user’s profile

a profile in the LDAPBIND class

eimSetConfigurationExt

Chapter 11. EIM APIs 389

Notes:

1. If a profile name is specified without a user identity, the profile is created

and updated as requested.

2. When a profile name is specified wth a user identity and the profile is

something other than IRR.EIM.DEFAULTS or IRR.PROXY.DEFAULTS,

the profile is created if it doesn’t exist, and associated the specified user

identity.

3. When EIM_CONFIG_NONE (*NONE) is used for the profile name and a

user identity is specified, the association the user identity may have with

an LDAPBIND class profile is broken. All other parameters are ignored

in this case.

userIdentity

The user ID associated with an LDAPBIND class profile. The maximum size

for this user ID is 8 bytes. Possible values are:

NULL Indicates a value which will not change.

user identity

The specific user identity you wish to associate with the LDAPBIND

class profile. Possible values are:

v NULL

v a user identity

bindDn

The bind distinguished name that is stored in the profile. The bind

distinguished name is the identity used when binding with LDAP.

This parameter allows the information to be added, replaced, or

removed from a profile. This parameter is ignored when the function

is delete EIM profile (1). The maximum size for a bindDn varies by

platform but is 1023 bytes.

 The bindDn parameter may have one of the following values:

NULL A value of NULL indicates that it should not change.

EIM_CONFIG_NONE

(*NONE) This value indicates that there is no bindDn.

value The bindDn. This value is used when establishing a

connection with the domain name stored in the profile.

bindPw

The bind password that is stored in the profile. The bind password

is used when binding with LDAP. This parameter allows the

information to be added, replaced, or removed from a profile. This

parameter is ignored when the function is delete EIM profile (1).

The maximum size for a bindPn varies by platform but is 128 bytes

for z/OS.

 The bindPw parameter may have one of the following values:

NULL A value of NULL indicates that it should not change.

EIM_CONFIG_NONE

(*NONE) This value indicates that there is no bindPw.

value The bindPw. This value is used when establishing a

connection with the domain name stored in the profile.

eimSetConfigurationExt

390 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

This parameter is ignored when the profile name is IRR.EIM.DEFAULTS or

IRR.PROXY.DEFAULTS.

enable

(Input) Indicates if this system is able to establish new connections in order to

participate in an EIM domain. Possible values are:

0 Not enabled to participate in EIM domain. New connections cannot be

established with the configured EIM domain.

non-zero

Enabled to participate in EIM domain. New connections may be

established with the EIM domain.

This parameter is ignored when the function is delete EIM profile (1).

ccsid

(Input) The CCSID of the input data. If the ccsid is 0 or 65535 the default job

ccsid will be used. The CCSID parameter is not used by all platforms. See the

authorization section for specific details.

eimrc

(Input/Output) The structure in which to return error code information. If the

return value is not 0, EIM sets eimrc with additional information. This parameter

can be NULL. For the format of the structure, see “EimRC -- EIM return code

parameter for C/C++” on page 164.

Related Information

See the following:

v “eimRetrieveConfiguration” on page 377

Authorization

EIM data

This API does not connect to the LDAP Server, so there is no EIM data

being accessed. Therefore, no EIM authority is needed.

z/OS authorization

The RACF user ID of the caller must satisfy the following requirements:

 The calling application can be running in system key or supervisor state or

one of the following:

v The RACF user ID of the caller’s address space has READ authority to

the BPX.SERVER profile in the FACILITY class

v The current RACF user ID has READ authority to the

IRR.RGETINFO.EIM profile in the FACILITY class

For applications that are not authorized (problem program state and keys),

the current RACF user ID must satisfy the following requirements:

v Have READ authority to the following profiles in the FACILITY class:

– IRR.RADMIN.ALTUSER

– IRR.RADMIN.RDEFINE

– IRR.RADMIN.RALTER

– IRR.RADMIN.RDELETE

v Have authority to issue the following commands:

– ALTUSER

– RALTER

eimSetConfigurationExt

Chapter 11. EIM APIs 391

– RDEFINE

– RDELETE

The FACILITY class must be active and RACLISTed before the application

will be granted authority to use this SAF service

Return Values

The following table lists the return values from the API. Following each return value

is the list of possible values for the messageCatalogMessageID field in the eimrc

parameter for that value.

 Return Value Meaning

0 Request was successful.

EACCES Access denied. Not enough permissions to access data.

EIMERR_AUTH_ERR (7) Insufficient authority for the operation.

EBADDATA eimrc is not valid.

EBUSY Unable to allocate internal system object.

EIMERR_NOLOCK (26) (z/OS does not return this value.) Unable to allocate

internal system object.

ECONVERT Data conversion error.

EIMERR_DATA_CONVERSION (13)

(z/OS does not return this value.) Error occurred when

converting data between code pages.

eimSetConfigurationExt

392 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Return Value Meaning

EINVAL Input parameter was not valid.

EIMERR_CCSID_INVAL (8) (z/OS does not return this value.) CCSID is outside of

valid range or CCSID is not supported.

EIMERR_CHAR_INVAL (21) A restricted character was used in the object name.

Check the API for a list of restricted characters.

EIMERR_PROTECT_INVAL (22) The protect parameter in EimSimpleConnectInfo is not

valid.

EIMERR_PARM_REQ (34) At a minimum one registry name or a profile name

must be specified.

EIMERR_PTR_INVAL (35) (z/OS does not return this value.) Pointer parameter is

not valid.

EIMERR_URL_NODN (45) URL has no Distinguished Name, and is required.

EIMERR_URL_NODOMAIN (46) URL has no domain and is required.

EIMERR_URL_NOHOST (47) URL does not have a host.

EIMERR_URL_NOTLDAP (49) URL does not begin with ldap.

EIMERR_CONN_INVAL (54) The connectinfo type is not valid.

EIMERR_INVALID_DN (66) Distinguished Name (DN) is not valid.

EIMERR_CONFIG_FORMAT_INVAL (68)

Configuration format is not valid

EIMERR_ZOS_FUNCTION_INVAL (6014)

The value specified for the function parameter is not

valid.

EIMERR_USERID_MUST_BE_NULL(6015)

The user identity parameter must be NULL when

specified with IRR.EIM.DEFAULTS or

IRR.PROXY.DEFAULTS profiles names.

EIMERR_FUNCTION_INVAL (6016)

The function parameter is not valid.

EIMERR_USERID_INVAL(6019) User identity does not exist.

EMVSSAF2ERR SAF/RACF error.

EIMERR_ZOS_NO_ACEE (6010) No task or address space ACEE found.

ENAMETOOLONG A parameter’s value is too long..

EIMERR_REGNAME_SIZE (39) Registry name is too large.

EIMERR_URL_SIZE (51) Configuration URL is too large.

EIMERR_PROFILE_SIZE (6016) The profile is too long.

EIMERR_USERID_SIZE (6017) The user identity is too long.

EIMERR_BINDPW_SIZE (6019) The bind password is too long.

EIMERR_BINDDN_SIZE (6020) The bind Distinguished Name (DN) is too long.

ENOMEM Unable to allocate required space.

EIMERR_NOMEM (27) No memory available. Unable to allocate required

space.

eimSetConfigurationExt

Chapter 11. EIM APIs 393

Return Value Meaning

EUNKNOWN Unexpected exception.

EIMERR_LDAP_ERR (23) (z/OS does not return this value.) Unexpected LDAP

error.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Example

The following example sets the configuration information but it is not enabled.

#include <eim.h>

#include <stdio.h>

#include <string.h>

#include <errno.h>

int main (int argc, char *argv[])

{

 int rc;

 char ldapURL[250];

 char eimerr[1000];

 EimRC * err;

 EimConfigInfo configInfo;

 char * errstr;

 err = (EimRC *)eimerr;

 memset(eimerr, 0x00, 1000);

 err->memoryProvidedByCaller = 1000;

 /*--*/

 /* */

 /* */

 /* */

 /* */

 /*--*/

 memset(&configInfo, 0x00, sizeof(EimConfigInfo));

 configInfo.format = EIM_CONFIG_FORMAT_0;

 configInfo.enable = 1;

 configInfo.function = EIM_CONFIG_FUNC_ADDMOD;

 configInfo.config.format0.ldapURL =

 "ldap://localhost:389/ibm-eimDomainName=MyDomain,o=MyOrg,c=us";

 configInfo.config.format0.profile = "timmys.ldapbind.profile";

 configInfo.config.format0.userIdentity = "timmy";

 configInfo.config.format0.localRegistry = "SYS1.RACFDB";

 configInfo.config.format0.kerberosRegistry = "z/OS KDC";

 configInfo.config.format0.x509Registry = "PKI Services";

 configInfo.config.format0.bindDn = "cn=racfid=timmy,profiletype=user,o=racfdb,c=us";

 configInfo.config.format0.bindPw = "secret";

 if (eimSetConfigurationExt(&configInfo, err)) {

 if (NULL == (errstr = eimErr2String(err))) {

 printf("eimSetConfigurationExt failed; rc=(%d) msgid(%d) errno: %s\n"

 , err->returnCode, err->messageCatalogMessageID

 , strerror(err->returnCode));

 } else {

 printf("eimSetConfigurationExt failed; rc=(%d) msgid(%d): %s\n"

 , err->returnCode, err->messageCatalogMessageID, errstr);

 free(errstr);

 }

 }

 return 0;

}

eimSetConfigurationExt

394 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Chapter 12. EIM header file and example

eim.h

The eim.h header file resides in the HFS in the /usr/include directory. You include

eim.h in all applications using EIM APIs.

Note: For the latest version of the eim.h header file refer to the Hierarchical File

System (HFS).
#ifdef __COMPILER_VER__

#pragma filetag ("IBM-1047")

#endif

/*

 * Source file: eim.h 1.13

 * Last Updated: 9/11/03 14:24:51

 */

/***/

/* */

/* Licensed Materials - Property of IBM */

/* 5694-A01 */

/* (C) Copyright IBM Corp. 2002, 2004 */

/* Status = HIT7709 */

/* */

/***/

#ifndef EIM_h

#define EIM_h

#ifdef __cplusplus

 #pragma info(none)

#else

 #pragma nomargins nosequence

 #pragma checkout(suspend)

#endif

/*** START HEADER FILE SPECIFICATIONS ********************************/

/* */

/* Header File Name: eim.h */

/* */

/* Descriptive Name: Enterprise Identity Mapping (EIM) APIs */

/* */

/* Description: */

/* */

/* Defines prototypes, macros, variables, and */

/* structures to be used with the EIM APIs. */

/* */

/* Header Files Included: */

/* */

/* */

/* Macros List: */

/* */

/* */

/* Structure List: */

/* */

/* */

/* */

/* Function Prototype List: */

/* */

/* */

/* Change Activity: */

/* */

/* CFD List: */

/* */

/* FLAG REASON LEVEL DATE PGMR CHANGE DESCRIPTION */

/* ---- ------------ ----- ------- -------- ---------------------- */

/* $A0= D9860600 5D20 020202 ROCH New include. */

/* $A1= P9A04903 5D20 020330 ROCH Fix AIX registry type. */

© Copyright IBM Corp. 2002, 2008 395

/* $L1= EIM HIT7708 091901 RDC1 EIM */

/* $P1= MG01014 HIT7708 062402 $PDTCG1: krb/ssl removal @P1A*/

/* $P2= MG01149 HIT7708 081502 $PDTCG1: Define errnos @P2A*/

/* $L2= MG01076 HIT7708 101002 $PDTCG1: krb/ssl bind support */

/* $01= D9121900 V5R3MO 021215 ROCH Add policy support. */

/* Add message catalog */

/* Id numbers. */

/* $02= D9121908 V5R3MO 021215 ROCH Add new config. */

/* Add assoc type to */

/* EimIdentifier struct */

/* $03= D9121910 V5R3MO 030216 ROCH Reorganize structures. */

/* $L3= EIME hit7709 030325 $PDTCG: Added new constant */

/* $04= P9A26515 V5R3MO 030330 ROCH Add linux registry type*/

/* $L4= EIME hit7709 030506 $PDTCG: Added Config support */

/* $05= P9A28411 V5R3MO 030518 ROCH Add Tivoli Access */

/* Manager type, duplicate*/

/* of Policy Director */

/* $06= P9A28415 V5R3MO 030720 ROCH Add Domino reg types. */

/* $07= P9A35259 V5R3MO 030803 ROCH Add new Windows reg */

/* type defines. */

/* $08= P9A36692 V5R3MO 030831 ROCH Add eimGetVersion */

/*** END HEADER FILE SPECIFICATIONS **********************************/

#if (__OS400_TGTVRM__>=510)

#pragma datamodel(P128)

#endif

#ifndef __MVS__ /*@P1C*/

#include "gssapi.h"

#else /*@P1C*/

#include <skrb/gssapi.h> /*@P1A*/

#endif /*@P1A*/

#ifdef __cplusplus

extern "C" {

#endif

#pragma enum(4)

/*--*/

/* On z/OS, define non-standard errno values if not defined in the */

/* errno.h file @P2A*/

/*--*/

#ifdef __MVS__ /*@P2A*/

 #include <errno.h> /*@P2A*/

 #ifndef EBADDATA /*@P2A*/

 #define EBADDATA 245 /* Data invalid. @P2A*/

 #endif /*@P2A*/

 #ifndef EUNKNOWN /*@P2A*/

 #define EUNKNOWN 246 /* Unknown system state. @P2A*/

 #endif /*@P2A*/

 #ifndef ENOTSUP /*@P2A*/

 #define ENOTSUP 247 /* Operation not supported. @P2A*/

 #endif /*@P2A*/

 #ifndef EBADNAME /*@P2A*/

 #define EBADNAME 248 /* Invalid file name specified. @P2A*/

 #endif /*@P2A*/

 #ifndef ENOTSAFE /*@P2A*/

 #define ENOTSAFE 249 /* Function not allowed. @P2A*/

 #endif

#endif

/*--*/

/* Constants */

/*--*/

#define EIM_HANDLE_SIZE 16 /* EIM Handle size */

396 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

#define EIM_LIST_MIN_SIZE 20 /* Minimal size for EimList

 structure */

#define EIM_RC_MIN_SIZE 48 /* Minimal size for EimRc

 structure */

#define EIM_CONFIG_MIN_SIZE 36 /* Minimal size for EimConfig

 structure */

#define EIM_ATTRIBUTE_MIN_SIZE 16 /* Minimal size for EimAttribute

 structure */

#define EIM_USER_IDENTITY_MIN_SIZE 16 /* Minimal size for EimUserIdentity

 structure @L3A*/

#define EIM_LDAP_URL_MAX 1000 /* Maximum size for LDAP URL */

#define EIM_LOCREG_MAX 256 /* Maximum size for local registry */

#define EIM_KRBREG_MAX 256 /* Maximum size for kerberos registry*/

#define EIM_X509REG_MAX 256 /* Maximum size for X.509 reg @01A*/

#define EIM_UNIQUE_ADD_SIZE 20 /* Minimal additional size required for

 identifier unique name */

/*--*/

/* Configuration constants */

/*--*/

#define EIM_CONFIG_NONE "*NONE"

/*--*/

/* Normalization methods */

/*--*/

#define EIM_NORM_CASE_IGNORE "-caseIgnore"

#define EIM_NORM_CASE_EXACT "-caseExact"

/*--*/

/* Registry types */

/*--*/

#define EIM_REGTYPE_RACF "1.3.18.0.2.33.1-caseIgnore"

#define EIM_REGTYPE_OS400 "1.3.18.0.2.33.2-caseIgnore"

#define EIM_REGTYPE_KERBEROS_EX "1.3.18.0.2.33.3-caseExact"

#define EIM_REGTYPE_KERBEROS_IG "1.3.18.0.2.33.4-caseIgnore"

#define EIM_REGTYPE_WIN_DOMAIN_KERB_IG "1.3.18.0.2.33.4-caseIgnore"

 /* @07A*/

#define EIM_REGTYPE_AIX "1.3.18.0.2.33.5-caseExact"

#define EIM_REGTYPE_NDS "1.3.18.0.2.33.6-caseIgnore"

#define EIM_REGTYPE_LDAP "1.3.18.0.2.33.7-caseIgnore"

#define EIM_REGTYPE_POLICY_DIRECTOR "1.3.18.0.2.33.8-caseIgnore"

#define EIM_REGTYPE_TIVOLI_ACCESS_MANAGER "1.3.18.0.2.33.8-caseIgnore"

 /* @05A*/

#define EIM_REGTYPE_WIN2K "1.3.18.0.2.33.9-caseIgnore"

#define EIM_REGTYPE_WINDOWS_LOCAL_WS "1.3.18.0.2.33.9-caseIgnore"

 /* @07A*/

#define EIM_REGTYPE_X509 "1.3.18.0.2.33.10-caseIgnore" /* @02C*/

#define EIM_REGTYPE_LINUX "1.3.18.0.2.33.11-caseIgnore" /* @04A*/

#define EIM_REGTYPE_DOMINO_LONG "1.3.18.0.2.33.12-caseIgnore" /* @06A*/

#define EIM_REGTYPE_DOMINO_SHORT "1.3.18.0.2.33.13-caseIgnore" /* @06A*/

/*--*/

/* Registry alias types */

/*--*/

#define EIM_ALIASTYPE_DNS "DNSHostName"

#define EIM_ALIASTYPE_KERBEROS "KerberosRealm"

#define EIM_ALIASTYPE_ISSUER "IssuerDN"

#define EIM_ALIASTYPE_ROOT "RootDN"

#define EIM_ALIASTYPE_TCPIP "TCPIPAddress"

#define EIM_ALIASTYPE_LDAPDNSHOSTNAME "LdapDnsHostName"

#define EIM_ALIASTYPE_OTHER "Other" /* @01A*/

Chapter 12. EIM header file and example 397

/*--*/

/* EimHandle Attributes */

/*--*/

enum EimHandleAttr {

 EIM_HANDLE_CCSID,

 EIM_HANDLE_DOMAIN, /* Retrieved but not changed */

 EIM_HANDLE_HOST, /* Retrieved but not changed */

 EIM_HANDLE_PORT, /* Retrieved but not changed */

 EIM_HANDLE_SECPORT, /* Retrieved but not changed */

 EIM_HANDLE_MASTER_HOST, /* Retrieved but not changed */

 EIM_HANDLE_MASTER_PORT, /* Retrieved but not changed */

 EIM_HANDLE_MASTER_SECPORT /* Retrieved but not changed */

};

/*--*/

/* Attributes to change, add, remove, enable, or disable */

/*--*/

enum EimChangeType {

 EIM_CHG,

 EIM_ADD,

 EIM_RMV,

 EIM_ENABLE, /* @01A*/

 EIM_DISABLE /* @01A*/

};

enum EimDomainAttr

{ /* Change type: */

 EIM_DOMAIN_DESCRIPTION, /* Change */

 EIM_DOMAIN_POLICY_ASSOCIATIONS /* Enable/Disable @01A*/

};

enum EimRegistryAttr

{ /* Change type: */

 EIM_REGISTRY_DESCRIPTION, /* Change */

 EIM_REGISTRY_LABELEDURI, /* Change */

 EIM_REGISTRY_MAPPING_LOOKUP, /* Enable/Disable @01A*/

 EIM_REGISTRY_POLICY_ASSOCIATIONS /* Enable/Disable @01A*/

};

enum EimRegistryUserAttr

{ /* Change type: */

 EIM_REGISTRYUSER_DESCRIPTION, /* Change */

 EIM_REGISTRYUSER_ADDL_INFO /* Add or remove */

};

enum EimIdentifierAttr

{ /* Change type: */

 EIM_IDENTIFIER_DESCRIPTION, /* Change */

 EIM_IDENTIFIER_NAME, /* Add or remove */

 EIM_IDENTIFIER_ADDL_INFO /* Add or remove */

};

/*--*/

/* EIMAssociationType */

/*--*/

enum EimAssociationType {

 EIM_ALL_ASSOC,

 EIM_TARGET,

 EIM_SOURCE,

 EIM_SOURCE_AND_TARGET,

 EIM_ADMIN,

 EIM_ALL_POLICY_ASSOC, /* @01A*/

 EIM_CERT_FILTER_POLICY, /* @01A*/

 EIM_DEFAULT_REG_POLICY, /* @01A*/

 EIM_DEFAULT_DOMAIN_POLICY /* @01A*/

398 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

};

/*--*/

/* EIMRegistryKind */

/*--*/

enum EimRegistryKind {

 EIM_ALL_REGISTRIES, /* System and application */

 EIM_SYSTEM_REGISTRY,

 EIM_APPLICATION_REGISTRY

};

/*--*/

/* EIMHandle */

/*--*/

typedef struct EIMHandle

{

 char handle[EIM_HANDLE_SIZE];

} EimHandle;

/*--*/

/* Eim Connect Information */

/*--*/

enum EimPasswordProtect {

 EIM_PROTECT_NO,

 EIM_PROTECT_CRAM_MD5,

 EIM_PROTECT_CRAM_MD5_OPTIONAL

};

enum EimConnectType {

 EIM_SIMPLE,

 EIM_KERBEROS,

 EIM_CLIENT_AUTHENTICATION

};

typedef struct EimSimpleConnectInfo

{

 enum EimPasswordProtect protect;

 char * bindDn;

 char * bindPw;

} EimSimpleConnectInfo;

typedef struct EimSSLInfo

{

 char * keyring;

 char * keyring_pw;

 char * certificateLabel;

} EimSSLInfo;

/* NOTE: for compatability, do not add any information to the union */

/* in this structure that will increase the size of the union. */

typedef struct EimConnectInfo

{

 enum EimConnectType type;

 union {

 gss_cred_id_t * kerberos;

 EimSimpleConnectInfo simpleCreds;

 } creds;

 EimSSLInfo * ssl;

} EimConnectInfo;

/*--*/

/* EimIdAction */

/*--*/

enum EimIdAction {

 EIM_FAIL,

 EIM_GEN_UNIQUE

};

/*--*/

/* EimIdentifierInfo */

Chapter 12. EIM header file and example 399

/*--*/

enum EimIdType {

 EIM_UNIQUE_NAME,

 EIM_ENTRY_UUID,

 EIM_NAME

};

/* NOTE: for compatability, do not add any information to the union */

/* in this structure that will increase the size of the union. */

typedef struct EimIdentifierInfo

{

 union {

 char * uniqueName;

 char * entryUUID;

 char * name;

 } id;

 enum EimIdType idtype;

} EimIdentifierInfo;

/*--*/

/* EimStatus */

/*--*/

enum EimStatus {

 EIM_STATUS_NOT_ENABLED,

 EIM_STATUS_ENABLED

}; /* @01A*/

/*--*/

/* Eim Policy Information */

/*--*/

enum EimPolicyFilterType {

 EIM_ALL_FILTERS,

 EIM_CERTIFICATE_FILTER

}; /* @01A*/

typedef struct EimCertificatePolicyFilter

{

 char * sourceRegistry;

 char * filterValue;

} EimCertificatePolicyFilter; /* @01A*/

typedef struct EimPolicyFilterInfo

{

 enum EimPolicyFilterType type;

 union {

 EimCertificatePolicyFilter certFilter;

 } filter;

} EimPolicyFilterInfo; /* @03C*/

typedef struct EimCertPolicyFilterSubsetInfo

{

 char * subjectFilter;

 char * issuerFilter;

} EimCertPolicyFilterSubsetInfo; /* @01A*/

typedef struct EimPolicyFilterSubsetInfo

{

 union {

 EimCertPolicyFilterSubsetInfo certFilter;

 } subset;

} EimPolicyFilterSubsetInfo; /* @01A*/

typedef struct EimCertificateFilterPolicyAssociation

{

 char * sourceRegistry;

 char * filterValue;

 char * targetRegistry;

 char * targetRegistryUserName;

400 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

} EimCertificateFilterPolicyAssociation; /* @01A*/

typedef struct EimDefaultRegistryPolicyAssociation

{

 char * sourceRegistry;

 char * targetRegistry;

 char * targetRegistryUserName;

} EimDefaultRegistryPolicyAssociation; /* @01A*/

typedef struct EimDefaultDomainPolicyAssociation

{

 char * targetRegistry;

 char * targetRegistryUserName;

} EimDefaultDomainPolicyAssociation; /* @01A*/

typedef struct EimPolicyAssociationInfo

{

 enum EimAssociationType type;

 union {

 EimCertificateFilterPolicyAssociation certFilter;

 EimDefaultRegistryPolicyAssociation defaultRegistry;

 EimDefaultDomainPolicyAssociation defaultDomain;

 } policyAssociation;

} EimPolicyAssociationInfo; /* @03C*/

/*--*/

/* Eim User Identity Information */

/*--*/

enum EimUserIdentityType {

 EIM_DER_CERT,

 EIM_BASE64_CERT,

 EIM_CERT_INFO

}; /* @01A*/

enum EimUserIdentityFormatType {

 EIM_REGISTRY_USER_NAME

}; /* @01A*/

typedef struct EimCertificateInfo

{

 char * issuerDN;

 char * subjectDN;

 unsigned char * publicKey;

 unsigned int publicKeyLen;

} EimCertificateInfo; /* @O1A*/

typedef struct EimCertificate

{

 char * certData;

 unsigned int certLength;

} EimCertificate; /* @01A*/

typedef struct EimUserIdentityInfo

{

 enum EimUserIdentityType type;

 union {

 EimCertificateInfo certInfo;

 EimCertificate cert;

 } userIdentityInfo;

} EimUserIdentityInfo; /* @03C*/

/*--*/

/* Eim Configuration Information */

/*--*/

enum EimConfigFormat {

 EIM_CONFIG_FORMAT_0

}; /* @02A*/

Chapter 12. EIM header file and example 401

#ifdef __MVS__ /* @L4A*/

enum EimConfigFunc { /* @L4A*/

 EIM_CONFIG_FUNC_ADDMOD, /* Add/Modify a profile @L4A*/

 EIM_CONFIG_FUNC_DEL /* Delete a profile @L4A*/

}; /* @L4A*/

#endif /* @L4A*/

typedef struct EimConfigFormat0

{

 char * ldapURL;

 char * localRegistry;

 char * kerberosRegistry;

 char * x509Registry;

#ifdef __MVS__ /* @L4A*/

 char * profile; /* RACF profile name @L4A*/

 char * userIdentity; /* userid @L4A*/

 char * bindDn; /* Bind distinguished name @L4A*/

 char * bindPw; /* Bind password name @L4A*/

#endif /* @L4A*/

} EimConfigFormat0; /* @02A*/

typedef struct EimConfigInfo

{

 enum EimConfigFormat format;

 int enable;

 int ccsid;

#ifdef __MVS__ /* @L4A*/

 enum EimConfigFunc function; /* Add/Mod or Delete profile @L4A*/

#endif /* @L4A*/

 union {

 EimConfigFormat0 format0;

 } config;

} EimConfigInfo; /* @03C*/

/*--*/

/* Eim Version */

/*--*/

enum EimVersion {

 EIM_VERSION_0, /* EIM is not supported on the specified host.

 @08A*/

 EIM_VERSION_1, /* EIM version 1 is supported by the specified

 host. This host will support EIM functionality

 provided with the first version of EIM. @08A*/

 EIM_VERSION_2 /* EIM version 2 is supported by the specified

 host. This host will support EIM functionality

 provided with the second version of EIM, which

 includes policy association support. @08A*/

};

/*--*/

/* Eim Host information for version */

/*--*/

enum EimHostInfoType {

 EIM_HANDLE,

 EIM_LDAP_URL

}; /* @08A*/

typedef struct EimHostInfo

{

 enum EimHostInfoType hostType;

 union {

 EimHandle * eim;

 char * ldapURL;

 } hostInfo;

} EimHostInfo; /* @08A*/

402 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

/*--*/

/* */

/* Return code structure */

/* */

/*--*/

typedef struct EimRC {

 unsigned int memoryProvidedByCaller; /* Input: Size of the entire RC

 structure. This is filled in by

 the caller. This is used to tell

 the API how much space was provided

 for substitution text */

 unsigned int memoryRequiredToReturnData;/* Output: Filled in by API

 to tell caller how much data could

 have been returned. Caller can then

 determine if the caller provided

 enough space (i.e. if the entire

 substitution string was able to be

 copied to this structure. */

 int returnCode; /* Same as the errno returned as the

 rc for the API */

 int messageCatalogSetNbr; /* Message catalog set number */

 int messageCatalogMessageID; /* Message catalog message id */

 int ldapError; /* ldap error, if available */

 int sslError; /* SLL error, if available */

 char reserved[16]; /* Reserved for future use */

 unsigned int substitutionTextLength; /* Length of substitution text

 excluding a null-terminator which

 may or may not be present */

 char substitutionText[1]; /* further info describing the

 error. */

} EimRC;

/*--*/

/* */

/* Access structures */

/* */

/*--*/

enum EimAccessUserType {

 EIM_ACCESS_DN,

 EIM_ACCESS_KERBEROS,

 EIM_ACCESS_LOCAL_USER

};

typedef struct EimAccessUser

{

 union {

 char * dn;

 char * kerberosPrincipal;

 char * localUser;

 } user;

 enum EimAccessUserType userType;

} EimAccessUser;

enum EimAccessType {

 EIM_ACCESS_ADMIN,

 EIM_ACCESS_REG_ADMIN,

 EIM_ACCESS_REGISTRY,

 EIM_ACCESS_IDENTIFIER_ADMIN,

 EIM_ACCESS_MAPPING_LOOKUP

};

enum EimAccessIndicator {

 EIM_ACCESS_NO,

 EIM_ACCESS_YES

};

/*--*/

/* */

Chapter 12. EIM header file and example 403

/* EimListData - this is used to access the data elements. */

/* EimSubList - this is used to access sub lists within the */

/* list information returned. */

/*--*/

typedef struct EimListData

{

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start

 of the parent structure i.e. the

 structure containing this

 structure */

} EimListData;

typedef struct EimSubList

{

 unsigned int listNum; /* Number of entries in the list */

 unsigned int disp; /* Displacement to sublist. This

 byte offset is relative to the

 start of the parent structure i.e.

 the structure containing this

 structure */

} EimSubList;

/*--*/

/* */

/* EimConfig */

/* Information returned from eimRetrieveConfiguration() API. */

/*--*/

typedef struct EimConfig

{

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 int enable; /* Flag to indicate if enabled to

 participate in EIM domain

 0 = not enabled

 1 = enabled */

 EimListData ldapURL; /* ldap URL for domain controller */

 EimListData localRegistry; /* Local system registry */

 EimListData kerberosRegistry; /* Kerberos registry */

 EimListData x509Registry; /* X.509 registry @01A*/

#ifdef __MVS__ /*@L4A*/

 EimListData profileName; /* The name of the profile

 storing the ldapURL and

 connect info */

 EimListData profClass; /* Class of configured profile */

 EimListData profBindDn; /* The configured bind dn */

 EimListData profBindPw; /* The configured bind password */

#endif /*@L4A*/

} EimConfig;

/*--*/

/* */

/* EimAttribute */

/* Information returned from eimGetAttribute() API. */

/*--*/

typedef struct EimAttribute

{

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 EimListData attribute; /* handle attribute */

} EimAttribute;

/*--*/

404 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

/* */

/* EimList - this is used by all EIM APIs that return a list. */

/* It gives information on the amount of information */

/* returned and then gives access to the first list */

/* entry. */

/*--*/

typedef struct EimList

{

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

} EimList;

/*--*/

/* EimDomain */

/* List information returned by the following APIs: */

/* eimListDomains */

/*--*/

typedef struct EimDomain

{

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData name; /* Domain name */

 EimListData dn; /* Distinguished name for the domain

 */

 EimListData description; /* Description */

 enum EimStatus policyAssociations; /* Policy associations

 attribute @01A*/

} EimDomain;

/*--*/

/* EimRegistry */

/* List information returned by the following APIs: */

/* eimListRegistries */

/* eimGetRegistryFromAlias */

/*--*/

typedef struct EimRegistry

{

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 enum EimRegistryKind kind; /* Kind of registry */

 EimListData name; /* Registry name */

 EimListData type; /* Registry type */

 EimListData description; /* Description */

 EimListData entryUUID; /* Entry UUID */

 EimListData URI; /* URI */

 EimListData systemRegistryName; /* System registry name */

 EimSubList registryAlias; /* EimRegistryAlias sublist */

 enum EimStatus mappingLookup; /* Mapping lookup attribute @01A*/

 enum EimStatus policyAssociations; /* Policy associations

 attribute @01A*/

} EimRegistry;

/*--*/

Chapter 12. EIM header file and example 405

/* EimIdentifier */

/* List information returned by the following APIs: */

/* eimListIdentifiers */

/* eimGetAssociatedIdentifiers */

/*--*/

typedef struct EimIdentifier

{

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData uniquename; /* Unique name */

 EimListData description; /* Description */

 EimListData entryUUID; /* UUID */

 EimSubList names; /* EimIdentifierName sublist */

 EimSubList additionalInfo; /* EimAddlInfo sublist */

 enum EimAssociationType type; /* Association type - only valid

 for eimGetAssociatedIdentifiers @02A*/

} EimIdentifier;

/*--*/

/* EimAssociation */

/* List information returned by the following APIs: */

/* eimListAssociations */

/*--*/

typedef struct EimAssociation

{

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 enum EimAssociationType associationType; /* Type of association */

 EimListData registryType; /* Registry type */

 EimListData registryName; /* Registry name */

 EimListData registryUserName; /* Registry user name */

} EimAssociation;

/*--*/

/* EimRegistryAlias */

/* List information returned by the following APIs: */

/* eimGetRegistryAlias */

/* Supplemental list information for the following structs: */

/* EimRegistry */

/*--*/

typedef struct EimRegistryAlias

{

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData type; /* Alias type */

 EimListData value; /* Alias value */

} EimRegistryAlias;

/*--*/

/* EimRegistryUser */

/* List information returned by the following APIs: */

/* eimListRegistryUsers */

/*--*/

typedef struct EimRegistryUser

{

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData registryUserName; /* Name */

 EimListData description; /* Description */

 EimSubList additionalInfo; /* EimAddlInfo sublist */

} EimRegistryUser;

/*--*/

406 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

/* EimTargetIdentity */

/* List information returned by the following APIs: */

/* eimGetTargetFromSource */

/* eimGetTargetFromIdentifier */

/*--*/

typedef struct EimTargetIdentity

{

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData userName; /* User name */

 enum EimAssociationType type; /* Association type @01A*/

} EimTargetIdentity;

/*--*/

/* EimIdentifierName */

/* Supplemental list information for the following structs: */

/* EimIdentifier */

/*--*/

typedef struct EimIdentifierName

{

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData name; /* Name */

} EimIdentifierName;

/*--*/

/* EimRegistryName */

/* List information returned by the following APIs: */

/* eimGetRegistryNameFromAlias */

/*--*/

typedef struct EimRegistryName

{

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData name; /* Name */

} EimRegistryName;

/*--*/

/* EimAddlInfo */

/*--*/

/* Supplemental list information for the following structs: */

/* EimRegistryUser */

/* EimIdentifier */

/*--*/

typedef struct EimAddlInfo

{

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData addlInfo; /* Additional info */

} EimAddlInfo;

/*--*/

/* EimPolicyFilter */

/*--*/

/* List information returned by the following APIs: */

/* eimListPolicyFilters */

/*--*/

typedef struct EimPolicyFilter

{

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 enum EimPolicyFilterType type; /* Type of policy filter. */

 EimListData sourceRegistry; /* Source registry name the policy

 filter is defined for. */

Chapter 12. EIM header file and example 407

EimListData filterValue; /* Filter value. */

} EimPolicyFilter; /* @01A*/

/*--*/

/* EimRegistryAssociation */

/*--*/

/* List information returned by the following APIs: */

/* eimListRegistryAssociations */

/*--*/

typedef struct EimRegistryAssociation

{

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 enum EimAssociationType type; /* Type of association. */

 EimListData registryName; /* Registry name the association

 is defined to. */

 EimListData registryUserName; /* Registry user name the

 association is defined to. */

 EimListData identifier; /* Unique name for eim identifier */

 EimListData sourceRegistry; /* Source registry name the

 association is defined for. */

 EimListData filterValue; /* Filter value */

 enum EimStatus domainPolicyAssocStatus;

 /* Policy association status for

 the domain:

 0 = not enabled

 1 = enabled */

 enum EimStatus sourceMappingLookupStatus;

 /* Mapping lookup status for the

 source registry:

 0 = not enabled

 1 = enabled */

 enum EimStatus targetMappingLookupStatus;

 /* Mapping lookup status for the

 target registry:

 0 = not enabled

 1 = enabled */

 enum EimStatus targetPolicyAssocStatus;

 /* Policy association status for

 the target registry:

 0 = not enabled

 1 = enabled */

} EimRegistryAssociation; /* @01A*/

/*--*/

/* EimPolicyFilterValue */

/*--*/

/* List information returned by the following APIs: */

/* eimFormatPolicyFilter */

/*--*/

typedef struct EimPolicyFilterValue

{

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData filterValue; /* Generated policy filter value */

} EimPolicyFilterValue; /* @01A*/

/*--*/

/* EimUserIdentity */

/*--*/

/* Information returned by the following APIs: */

/* eimFormatUserIdentity */

/*--*/

typedef struct EimUserIdentity

{

408 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

unsigned int bytesReturned; /* Number of bytes actually

 by the API. */

 unsigned int bytesAvailable; /* Number of bytes of available

 data that could be returned by

 the API. */

 EimListData userIdentity; /* User identity */

} EimUserIdentity; /* @01A*/

/*--*/

/* EimAccess */

/*--*/

/* List information returned by the following APIs: */

/* eimListAccess */

/*--*/

typedef struct EimAccess

{

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData user; /* User with access. This data will

 be in the format of the dn for

 for access id */

} EimAccess;

/*--*/

/* EimUserAccess */

/*--*/

/* List information returned by the following APIs: */

/* eimListUserAccess */

/*--*/

typedef struct EimUserAccess

{

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 enum EimAccessIndicator eimAdmin;

 enum EimAccessIndicator eimRegAdmin;

 enum EimAccessIndicator eimIdenAdmin;

 enum EimAccessIndicator eimMappingLookup;

 EimSubList registries; /* EimRegistryName sublist */

} EimUserAccess;

/*--*/

/* */

/* Domain */

/* */

/*--*/

int eimCreateDomain

 (

 char * ldapURL, /* Input: ldap URL that indicates

 host, port, parent dn */

 EimConnectInfo connectInfo, /* Input: Connection information */

 char * description, /* Input: Domain description */

 EimRC * eimrc /* Input/Output: return code */

);

int eimDeleteDomain

 (

 char * ldapURL, /* Input: ldap URL that indicates

 host, port, parent dn */

 EimConnectInfo connectInfo, /* Input: Connection information */

 EimRC * eimrc /* Input/Output: return code */

);

int eimChangeDomain

 (

Chapter 12. EIM header file and example 409

char * ldapURL, /* Input: ldap URL that indicates

 host, port, parent dn */

 EimConnectInfo connectInfo, /* Input: Connection information */

 enum EimDomainAttr attrName, /* Input: Attribute to change */

 char * attrValue, /* Input: New attribute value */

 enum EimChangeType changeType, /* Input: Type of change */

 EimRC * eimrc /* Input/Output: return code */

);

int eimListDomains

 (

 char * ldapURL, /* Input: ldap URL that indicates

 host, port, parent dn */

 EimConnectInfo connectInfo, /* Input: Connection information */

 unsigned int lengthOfListData, /* Input: size provided for

 listData */

 EimList * listData, /* Output: In EimList the field

 firstEntry will get to the

 first EimDomain element. */

 EimRC * eimrc /* Input/Output: return code */

);

/*--*/

/* */

/* Configuration */

/* */

/*--*/

int eimSetConfiguration

 (

 int enable, /* Input: indicate if enabled to

 participate in EIM domain

 0 = not enabled

 1 = enabled */

 char * ldapURL, /* Input: LDAP URL configuration

 information: host, port and

 domain dn */

 char * localRegistry, /* Input: Local registry name */

 char * kerberosRegistry, /* Input: Kerberos registry */

 int ccsid, /* CCSID of the input data */

 EimRC * eimrc /* Input/Output: return code */

);

int eimSetConfigurationExt

 (

 EimConfigInfo * configInfo, /* Input: configuration info. */

 EimRC * eimrc /* Input/Output: return code */

); /* @02A*/

int eimRetrieveConfiguration

 (

 unsigned int lengthOfEimConfig, /* Input: size provided for

 configData */

 EimConfig * configData, /* Output: Configuration data

 returned. */

#ifdef __MVS__ /*@L4A*/

 char * profile, /* Input: Name of profile that

 contains z/OS config info. @L4A*/

 char * userIdentity, /* Input: User Id with an LDAPBIND

 class profile. @L4A*/

#endif /*@L4A*/

 int ccsid, /* CCSID the data will be returned

 in */

 EimRC * eimrc /* Input/Output: return code */

);

/*--*/

/* */

/* Handles */

410 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

/* */

/*--*/

int eimCreateHandle

 (

 EimHandle * eim, /* Output: eimHandle */

 char * ldapURL, /* Input: ldap URL that indicates

 host, port, parent dn */

 EimRC * eimrc /* Input/Output: return code */

);

int eimDestroyHandle

 (

 EimHandle * eim, /* Input: eimHandle */

 EimRC * eimrc /* Input/Output: return code */

);

int eimGetAttribute

 (

 EimHandle * eim, /* Input: Eim handle */

 enum EimHandleAttr attrName, /* Input: name of attribute to get

 */

 unsigned int lengthOfEimAttribute, /* Input: size provided for

 EimAttribute */

 EimAttribute * attribute, /* Output: Attribute data

 returned. */

 EimRC * eimrc /* Input/Output: return code */

);

int eimSetAttribute

 (

 EimHandle * eim, /* Input: Eim handle */

 enum EimHandleAttr attrName, /* Input: name of attribute to set

 */

 void * attrValue, /* Input: Pointer to buffer to

 the new attribute value */

 EimRC * eimrc /* Input/Output: return code */

);

int eimGetVersion

 (

 EimHostInfo * hostInfo, /* Input: Host information */

 enum EimVersion * version, /* Output: version number */

 EimRC * eimrc /* Input/Output: return code */

); /* @08A*/

/*--*/

/* */

/* Connect */

/* */

/*--*/

int eimConnect

 (

 EimHandle * eim, /* Input: Eim handle */

 EimConnectInfo connectInfo, /* Input: Connection information */

 EimRC * eimrc /* Input/Output: return code */

);

int eimConnectToMaster

 (

 EimHandle * eim, /* Input: Eim handle */

 EimConnectInfo connectInfo, /* Input: Connection information */

 EimRC * eimrc /* Input/Output: return code */

);

Chapter 12. EIM header file and example 411

/*--*/

/* */

/* Registries */

/* */

/*--*/

int eimAddSystemRegistry

 (

 EimHandle * eim, /* Input: Eim handle */

 char * registryName, /* Input: Registry name */

 char * registryType, /* Input: Registry type */

 char * description, /* Input: Description */

 char * URI, /* Input: URI */

 EimRC * eimrc /* Input/Output: return code */

);

int eimAddApplicationRegistry

 (

 EimHandle * eim, /* Input: Eim handle */

 char * registryName, /* Input: Registry name */

 char * registryType, /* Input: Registry type */

 char * description, /* Input: Description */

 char * systemRegistryName, /* Input: Associated system

 registry */

 EimRC * eimrc /* Input/Output: return code */

);

int eimRemoveRegistry

 (

 EimHandle * eim, /* Input: Eim handle */

 char * registryName, /* Input: Registry name */

 EimRC * eimrc /* Input/Output: return code */

);

int eimChangeRegistry

 (

 EimHandle * eim, /* Input: Eim handle */

 char * registryName, /* Input: Registry name */

 enum EimRegistryAttr attrName, /* Input: name of attribute to

 change. */

 char * attrValue, /* Input: new value for attribute */

 enum EimChangeType changeType, /* Input: Type of change to make */

 EimRC * eimrc /* Input/Output: return code */

);

int eimListRegistries

 (

 EimHandle * eim, /* Input: Eim handle */

 char * registryName, /* Input: Registry name */

 char * registryType, /* Input: Registry type */

 enum EimRegistryKind registryKind,/* Input: Registry kind */

 unsigned int lengthOfListData, /* Input: size provided for

 listData */

 EimList * listData, /* Output: In EimList the field

 firstEntry will get to the

 first EimRegistry element */

 EimRC * eimrc /* Input/Output: return code */

);

/*--*/

/* */

/* Identifier */

/* */

/*--*/

int eimAddIdentifier

412 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

(

 EimHandle * eim, /* Input: Eim handle */

 char * name, /* Input: Requested name for

 Identifier */

 enum EimIdAction nameInUseAction, /* Input: Action to take if the

 requested name is already in use */

 unsigned int * sizeOfUniqueName, /* Input/Output: size of

 uniqueName field */

 char * uniqueName, /* Output: Unique name */

 char * description, /* Input: Description */

 EimRC * eimrc /* Input/Output: return code */

);

int eimRemoveIdentifier

 (

 EimHandle * eim, /* Input: Eim handle */

 EimIdentifierInfo * idName, /* Input: Identifier info */

 EimRC * eimrc /* Input/Output: return code */

);

int eimChangeIdentifier

 (

 EimHandle * eim, /* Input: Eim handle */

 EimIdentifierInfo * idName, /* Input: Identifier info */

 enum EimIdentifierAttr attrName, /* Input: name of attribute to

 change. */

 char * attrValue, /* Input: new value for attribute */

 enum EimChangeType changeType, /* Input: Type of change to make */

 EimRC * eimrc /* Input/Output: return code */

);

int eimListIdentifiers

 (

 EimHandle * eim, /* Input: Eim handle */

 EimIdentifierInfo * idName, /* Input: Identifier info */

 unsigned int lengthOfListData, /* Input: size provided for

 listData */

 EimList * listData, /* Output: In EimList the field

 firstEntry will get to the

 first EimIdentifier element */

 EimRC * eimrc /* Input/Output: return code */

);

int eimGetAssociatedIdentifiers

 (

 EimHandle * eim, /* Input: Eim handle */

 enum EimAssociationType associationType, /* Input: Type of

 association */

 char * registryName, /* Input: Registry name */

 char * registryUserName, /* Input: Registry user name */

 unsigned int lengthOfListData, /* Input: size provided for

 listData */

 EimList * listData, /* Output: In EimList the field

 firstEntry will get to the

 first EimIdentifier element */

 EimRC * eimrc /* Input/Output: return code */

);

/*--*/

/* */

/* Association */

/* */

/*--*/

int eimAddAssociation

 (

 EimHandle * eim, /* Input: Eim handle */

Chapter 12. EIM header file and example 413

enum EimAssociationType associationType, /* Input: Type of

 association */

 EimIdentifierInfo * idName, /* Input: Identifier info */

 char * registryName, /* Input: Registry name */

 char * registryUserName, /* Input: Registry user name */

 EimRC * eimrc /* Input/Output: return code */

);

int eimRemoveAssociation

 (

 EimHandle * eim, /* Input: Eim handle */

 enum EimAssociationType associationType, /* Input: Type of

 association */

 EimIdentifierInfo * idName, /* Input: Identifier info */

 char * registryName, /* Input: Registry name */

 char * registryUserName, /* Input: Registry user name */

 EimRC * eimrc /* Input/Output: return code */

);

int eimListAssociations

 (

 EimHandle * eim, /* Input: Eim handle */

 enum EimAssociationType associationType, /* Input: Type of

 association */

 EimIdentifierInfo * idName, /* Input: Identifier info */

 unsigned int lengthOfListData, /* Input: size provided for

 listData */

 EimList * listData, /* Output: In EimList the field

 firstEntry will get to the

 first EimAssociation element */

 EimRC * eimrc /* Input/Output: return code */

);

int eimListRegistryAssociations

 (

 EimHandle * eim, /* Input: Eim handle */

 enum EimAssociationType associationType, /* Input: Type of policy

 association */

 char * registryName, /* Input: Registry name */

 char * registryUserName, /* Input: Registry user name */

 unsigned int lengthOfListData, /* Input: size provided for

 listData */

 EimList * listData, /* Output: In EimList the field

 firstEntry will get to the

 first EimRegistryAssociation

 element */

 EimRC * eimrc /* Input/Output: return code */

); /* @01A*/

/*--*/

/* */

/* Mappings */

/* */

/*--*/

int eimGetTargetFromSource

 (

 EimHandle * eim, /* Input: Eim handle */

 char * sourceRegistryName,/* Input: Source registry name

 */

 char * sourceRegistryUserName,/* Input: Source registry

 user name */

 char * targetRegistryName, /* Input: Target registry name

 */

 char * additionalInformation, /* Input: Additional info */

 unsigned int lengthOfListData, /* Input: size provided for

414 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

listData */

 EimList * listData, /* Output: In EimList the field

 firstEntry will get to the

 first EimTargetIdentity element*/

 EimRC * eimrc /* Input/Output: return code */

);

int eimGetTargetFromIdentifier

 (

 EimHandle * eim, /* Input: Eim handle */

 EimIdentifierInfo * idName, /* Input: Identifier info */

 char * targetRegistryName, /* Input: Target registry name

 */

 char * additionalInformation, /* Input: Additional info */

 unsigned int lengthOfListData, /* Input: size provided for

 listData */

 EimList * listData, /* Output: In EimList the field

 firstEntry will get to the

 first EimTargetIdentity element*/

 EimRC * eimrc /* Input/Output: return code */

);

/*--*/

/* */

/* Registry User */

/* */

/*--*/

int eimChangeRegistryUser

 (

 EimHandle * eim, /* Input: Eim handle */

 char * registryName, /* Input: Registry name */

 char * registryUserName, /* Input: Registry user name */

 enum EimRegistryUserAttr attrName, /* Input: name of attribute to

 change. */

 char * attrValue, /* Input: new value for attribute */

 enum EimChangeType changeType, /* Input: Type of change to make */

 EimRC * eimrc /* Input/Output: return code */

);

int eimListRegistryUsers

 (

 EimHandle * eim, /* Input: Eim handle */

 char * registryName, /* Input: Registry name */

 char * registryUserName, /* Input: Registry user name */

 unsigned int lengthOfListData, /* Input: size provided for

 listData */

 EimList * listData, /* Output: In EimList the field

 firstEntry will get to the

 first EimRegistryUser element */

 EimRC * eimrc /* Input/Output: return code */

);

/*--*/

/* */

/* Registry Alias */

/* */

/*--*/

int eimChangeRegistryAlias

 (

 EimHandle * eim, /* Input: Eim handle */

 char * registryName, /* Input: Registry name */

 char * aliasType, /* Input: Registry alias type */

 char * aliasValue, /* Input: Registry alias value */

 enum EimChangeType changeType, /* Input: Type of change to make */

 EimRC * eimrc /* Input/Output: return code */

);

Chapter 12. EIM header file and example 415

int eimListRegistryAliases

 (

 EimHandle * eim, /* Input: Eim handle */

 char * registryName, /* Input: Registry name */

 unsigned int lengthOfListData, /* Input: size provided for

 listData */

 EimList * listData, /* Output: In EimList the field

 firstEntry will get to the

 first EimRegistryAlias element */

 EimRC * eimrc /* Input/Output: return code */

);

int eimGetRegistryNameFromAlias

 (

 EimHandle * eim, /* Input: Eim handle */

 char * aliasType, /* Input: Registry alias type */

 char * aliasValue, /* Input: Registry alias value */

 unsigned int lengthOfListData, /* Input: size provided for

 listData */

 EimList * listData, /* Output: In EimList the field

 firstEntry will get to the

 first EimRegistryName element */

 EimRC * eimrc /* Input/Output: return code */

);

/*--*/

/* */

/* Policies */

/* */

/*--*/

int eimFormatPolicyFilter

 (

 EimUserIdentityInfo * userIdentityInfo, /* Input: User identity

 information to format */

 EimPolicyFilterSubsetInfo * subsetInfo, /* Input: Subset info */

 unsigned int lengthOfListData, /* Input: size provided for

 listData */

 EimList * listData, /* Output: In EimList the field

 firstEntry will get to the

 first EimPolicyFilterValue

 element */

 EimRC * eimrc /* Input/Output: return code */

); /* @01A*/

int eimAddPolicyFilter

 (

 EimHandle * eim, /* Input: Eim handle */

 EimPolicyFilterInfo * filterInfo, /* Input: Policy filter info */

 EimRC * eimrc /* Input/Output: return code */

); /* @01A*/

int eimRemovePolicyFilter

 (

 EimHandle * eim, /* Input: Eim handle */

 EimPolicyFilterInfo * filterInfo, /* Input: Policy filter info */

 EimRC * eimrc /* Input/Output: return code */

); /* @01A*/

int eimListPolicyFilters

 (

 EimHandle * eim, /* Input: Eim handle */

 enum EimPolicyFilterType filterType, /* Input: Type of policy

 filter */

416 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

char * registryName, /* Input: Registry name */

 unsigned int lengthOfListData, /* Input: size provided for

 listData */

 EimList * listData, /* Output: In EimList the field

 firstEntry will get to the

 first EimPolicyFilter element */

 EimRC * eimrc /* Input/Output: return code */

); /* @01A*/

int eimAddPolicyAssociation

 (

 EimHandle * eim, /* Input: Eim handle */

 EimPolicyAssociationInfo * policyAssoc, /* Input: Policy

 association info */

 EimRC * eimrc /* Input/Output: return code */

); /* @01A*/

int eimRemovePolicyAssociation

 (

 EimHandle * eim, /* Input: Eim handle */

 EimPolicyAssociationInfo * policyAssoc, /* Input: Policy

 association info */

 EimRC * eimrc /* Input/Output: return code */

); /* @01A*/

/*--*/

/* */

/* User Identities */

/* */

/*--*/

int eimFormatUserIdentity

 (

 enum EimUserIdentityFormatType formatType, /* Input: Type of format

 to return */

 EimUserIdentityInfo * userIdentityInfo, /* Input: User identity

 information to format */

 unsigned int lengthOfUserIdentity, /* Input: size provided for

 userIdentity */

 EimUserIdentity * userIdentity, /* Output: formatted user

 identity */

 EimRC * eimrc /* Input/Output: return code */

); /* @01A*/

/*--*/

/* */

/* Access */

/* */

/*--*/

int eimAddAccess

 (

 EimHandle * eim, /* Input: Eim handle */

 EimAccessUser * accessUser, /* Input: User for access */

 enum EimAccessType accessType, /* Input: Type of access */

 char * registryName, /* Input: Registry name */

 EimRC * eimrc /* Input/Output: return code */

);

int eimRemoveAccess

 (

 EimHandle * eim, /* Input: Eim handle */

 EimAccessUser * accessUser, /* Input: User for access */

 enum EimAccessType accessType, /* Input: Type of access */

 char * registryName, /* Input: Registry name */

Chapter 12. EIM header file and example 417

EimRC * eimrc /* Input/Output: return code */

);

int eimListAccess

 (

 EimHandle * eim, /* Input: Eim handle */

 enum EimAccessType accessType, /* Input: Type of access */

 char * registryName, /* Input: Registry name */

 unsigned int lengthOfListData, /* Input: size provided for

 listData */

 EimList * listData, /* Output: In EimList the field

 firstEntry will get to the

 first EimAccess element */

 EimRC * eimrc /* Input/Output: return code */

);

int eimListUserAccess

 (

 EimHandle * eim, /* Input: Eim handle */

 EimAccessUser * accessUser, /* Input: User for access */

 unsigned int lengthOfListData, /* Input: size provided for

 listData */

 EimList * listData, /* Output: In EimList the field

 firstEntry will get to the

 first EimUserAccess element */

 EimRC * eimrc /* Input/Output: return code */

);

int eimQueryAccess

 (

 EimHandle * eim, /* Input: Eim handle */

 EimAccessUser * accessUser, /* Input: User for access */

 enum EimAccessType accessType, /* Input: Type of access */

 char * registryName, /* Input: Registry name */

 unsigned int * accessIndicator, /* Output: Indicates

 whether access found */

 EimRC * eimrc /* Input/Output: return code */

);

/*--*/

/* */

/* Error Message */

/* */

/*--*/

char * eimErr2String

 (

 EimRC * eimrc /* Input: return code */

);

#pragma enum(pop)

#ifdef __cplusplus

}

#endif

#if (__OS400_TGTVRM__>=510)

#pragma datamodel(pop)

#endif

#endif /* EIM_h */

Example for creating LDAP suffix and user objects

The following is a sample ldapadd command and ldif file to create suffix objects

and an LDAP user object. Here are the suffix.ldif file contents:

418 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

--

Create the country us object

--

dn: c=us

objectclass: top

objectclass: country

c: us

--

Create the ibm organization under c=us

--

dn: o=ibm,c=us

objectclass: top

objectclass: organization

o: ibm

--

Create the dept20 organizational unit object under

o=ibm,c=us

--

dn: ou=dept20,o=ibm,c=us

objectclass: top

objectclass: organizationalunit

ou: dept20

--

Create the eim administrator user object with a password

of "secret" under ou=dept20,o=ibm,c=us

--

dn: cn=eim administrator,ou=dept20,o=ibm,c=us

objectclass: top

objectclass: person

sn: eim administrator

cn: eim administrator

userpassword: secret

End of file suffix.ldif

Then, to add these entries to LDAP, issue the following ldapadd command from the

z/OS UNIX shell:

ldapadd

-h ldap://some.ldap.host

-D cn=ldap administrator

-w secret

-f suffix.ldif

Chapter 12. EIM header file and example 419

420 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Part 2. Working with remote services

© Copyright IBM Corp. 2002, 2008 421

422 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Chapter 13. The z/OS Identity Cache

Today's transaction environments are typically multi-platform heterogeneous

configurations with disparate security domains. Each security domain can have its

own security service provider and authentication methods. While a user might be

authenticated in one security domain, the authenticated identity information may be

lost when transactions initiated in one security domain are executed in another.

For example, a user may authenticate his or her identity to a security product

running in a distributed environment, and then initiate a transaction that executes on

a z/OS system under the authority of a shared identity. Since the user's original

authenticated identity is not known to z/OS, SMF audit records contain information

only for the shared identity. Because the original authenticated identity is not

maintained across the security domains, individual accountability is lost.

The z/OS Identity Cache enables an application to maintain identity information

across security domains, so that individual accountability is not lost. Distributed

applications can use the z/OS Identity Cache to enable end-to-end auditing that

tracks the identity initially used for authentication as well as the identity on the

current platform.

The primary interface to the z/OS Identity Cache is the ICTX Java API which

enables applications to store identity context information in the Identity Cache on

the local or on a remote z/OS system. Remote access to the Identity Cache from a

z/OS or non-z/OS system is provided by LDAP extended operations support which

is leveraged by the ICTX Java API. Cache management is provided by the

R_cacheserv SAF callable service.

The ICTX Java API method for storing identity context information in the Identity

Cache returns a reference which can subsequently be used to retrieve that

information. For example, a distributed application could pass the reference to a

RACF-secured z/OS application which could then retrieve the original user

authentication information from the Identity Cache. In particular, the RACROUTE

REQUEST = VERIFY macro and the initACEE SAF callable service both accept an

identity context reference as a user ID and password and will create an access

control environment element (ACEE) that includes the identity context information

from the Identity Cache. This information will in turn be included in SMF audit

records.

How the z/OS Identity Cache works

An application can store user authentication information in the z/OS Identity Cache,

and will get an 8-byte identity context reference value which can subsequently be

used to retrieve that information. The reference can be passed to an application

running on z/OS, so that when it uses the RACROUTE REQUEST=VERIFY macro

or the initACEE service to create a z/OS security context, the ACEE created will be

extended to include the original authentication information. Because the original

authentication information is now included in the ACEE, SMF audit records for the

user will also contain this extended authentication information.

The following figure illustrates how a distributed application can use the z/OS

Identity Cache to make the original user authentication information available to a

remote z/OS application and system.

© Copyright IBM Corp. 2002, 2008 423

Distributed

security

context

Identity

Context

Reference

z/OS Identity Cache

RACF-secured

z/OS application

ACEE

Distributed

application

z/OS

(2)

(3)

(4)

(5)

(6)

(1)

Authentication

information

In this figure, the user (1) authenticates to a distributed application. The distributed

application uses the ICTX Java API to (2) store the authentication information in a

the z/OS Identity Cache on a remote z/OS system. The ICTX Java API (3) returns

the identity context reference to the calling application, which in turn (4) passes this

reference to a RACF-secured z/OS application. The z/OS application uses the

identity context reference in place of a user ID and password, when it (5) calls the

RACROUTE REQUEST=VERIFY macro or the initACEE SAF callable service to

build the security context for the user. RACF will recognize that the supplied user ID

and password is an identity context reference, and so will (6) retrieve the user

authentication information from the z/OS Identity Cache and will build an ACEE that

contains the extended authentication information for the user. This extended

authentication information from the Identity Cache will be included in subsequent

SMF audit records for transactions initiated by the user.

The application accessing a z/OS Identity Cache may be running locally or

remotely. Remote applications running on either a z/OS or non-z/OS system can

access an Identity Cache on a remote z/OS system using a z/OS IBM TDS server

configured with ICTX extended operations. The application will provide the ICTX

Java API with a URL identifying the z/OS IBM TDS server as well as the ID and

password for a RACF user ID on the remote system. The z/OS IBM TDS server will

perform a simple bind operation using the supplied RACF ID and password for

authentication to the remote z/OS system. For z/OS applications accessing the local

Identity Cache, the z/OS IBM TDS server is not needed.

The Identity Cache can be configured to ensure that the stored information on the

authenticated user also contains a mapping to a local z/OS user ID. The Identity

Cache can be configured to accept a mapping supplied by the application, or it can

be configured to access an EIM domain to perform a lookup operation to find the

mapping. The local user ID, whether provided by the application or identified using

an EIM lookup operation, will be stored in the Identity Cache along with the initial

authentication information. If a reference to an identity context in this Identity Cache

is passed to the RACROUTE REQUEST=VERIFY macro or the initACEE SAF

callable service, the resulting ACEE, and subsequent SMF audit records, will also

include the additional mapped local user ID information.

424 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Configuring your environment to use the z/OS Identity Cache

Some configuration is required for z/OS systems that host, and applications that

use, an Identity Cache. The authenticating application needs to know where the

Identity Cache is located so that it can store information about the end user and get

back an identity context reference. The authenticating application then passes the

identity context reference to a server which also needs to know where the Identity

Cache resides so that it can retrieve the stored information. An application will need

to know if it is accessing the Identity Cache on a local node, or if it accessing the

Identity Cache on a remote node. If accessing the Identity Cache on a remote

node, the application will need to know the host name of the z/OS IBM TDS server

that is providing the connection to the remote system.

If you want the Identity Cache to contain user ID mappings from the authenticated

user ID to a local z/OS user ID, you need to configure the Identity Cache to specify

that ID mapping is required. You can also configure the Identity Cache to specify

how it should obtain these mappings – from the application storing the

authenticated user ID information in the Identity Cache, from an EIM lookup

operation, or using a combination of these approaches. If the Identity Cache is

configured to do an EIM lookup, an EIM domain will also need to be set up.

If you are using the Identity Cache on more than one system in a z/OS sysplex,

there are some additional configuration considerations. See “Configuring z/OS

sysplex for the Identity Cache” on page 430 for more information.

Configuring Java applications to use the z/OS Identity Cache

The main application interface to the z/OS Identity Cache is the ICTX Java API

described in more detail in Chapter 14, “ICTX Java API,” on page 431. Applications

can use the API to access the Identity Cache on the local z/OS system or on a

remote z/OS system.

To use the ICTX Java API to access a z/OS Identity Cache on either the local or a

remote z/OS system, all applications must:

v have access to the ICTX Java classes defined in the ictx.jar file, which is located

in the /usr/lpp/eim/lib HFS directory. To get access to the ICTX Java classes,

include the ictx.jar file in the CLASSPATH of the Java application.

v have a RACF user ID on the z/OS system where the Identity Cache is located,

and the permission necessary to access the Identity Cache. The ICTX Java API

uses the R_cacheserv callable service to perform read and write operations to

the Identity Cache. Use of the R_cacheserv callable service is authorized by the

IRR.RCACHESERV.ICTX resource in the FACILITY class, so the RACF user ID

associated with the request to access the Identity Cache must have the correct

access permission to the IRR.RCACHESERV.ICTX resource in the FACILITY

class.

– If the application is a z/OS application accessing the Identity Cache on the

local system, then the RACF user ID associated with the request is the one

under which the application is running.

– If the application is running on a z/OS or non-z/OS system and accessing the

Identity Cache on a remote z/OS system, it will be accessing the remote

system's Identity Cache through an IBM TDS server. In this case, the RACF

user ID associated with the request is the RACF user ID used to authenticate

with the remote z/OS system through an LDAP bind operation.

Chapter 13. The z/OS Identity Cache 425

The level of access permission required to access the IRR.RCACHESERV.ICTX

resource in the FACILITY class depends on the specific type of operation the

application needs to perform.

– If the application is going to store user information in the Identity Cache, then

the RACF user ID needs UPDATE access to the IRR.RCACHESERV.ICTX

resource in the FACILITY class.

– If the application is going to retrieve information from the Identity Cache (using

either the ICTX Java API, the RACROUTE REQUEST=VERIFY macro, or the

initACEE SAF callable service), then the RACF user ID needs READ access

to the IRR.RCACHESERV.ICTX resource in the FACILITY class.

The FACILITY class must be active and enabled for RACLIST processing.

Access updates for a user will not take effect until the user logs on again.

In addition to the preceding configuration requirements common to all Java

applications, additional configuration requirements vary depending on whether the

application is accessing the Identity Cache on the local or on a remote z/OS

system.

v If the application will be accessing the Identity Cache on the local z/OS system, it

must also have access to the EIM and ICTX API routines. To get access to these

routines, include the HFS directory /usr/lpp/eim/lib in the LIBPATH of the z/OS

Java application.

v If the application will be accessing the Identity Cache on a remote z/OS system,

it must also specify:

– the host name and, optionally, the port number for the z/OS IBM TDS server

that is providing the connection to the z/OS Identity Cache on the remote

system. This host name may begin with ldap:// or ldaps://. If ldaps:// is used,

then it is assumed the IBM TDS server as been set up for SSL or TLS

communication.

- If the application is running on a z/OS system, the host name for the z/OS

IBM TDS server can be set as an in-storage Identity Cache default value

(as described in “Configuring Identity Cache connection defaults” on page

429).

- If the application is running on a non-z/OS system, the host name for the

z/OS IBM TDS server could be obtained from a properties file specific to

the application.

– the bind credentials for connecting to the remote system. The bind credentials

correspond to a RACF user ID and password on the remote system. If the

application is running on a z/OS system, the bind credentials can be set as

in-storage Identity Cache default values (as described in “Configuring Identity

Cache connection defaults” on page 429).

The z/OS IBM TDS server needs to have been configured with ICTX extended

operations and started. To configure the z/OS IBM TDS server with ICTX

extended operations, modify the ds.conf file with a section that defines the ICTX

extended operations support. For more information, refer to “Configuring the IBM

Tivoli Directory Server for remote services support” on page 432.

Configuring the z/OS Identity Cache

You can configure the Identity Cache to:

v determine if, and how, mappings to local z/OS user IDs will be included in the

Identity Cache. These user ID mappings can be provided by applications, or

determined by an EIM lookup operation. The Identity Cache can be configured so

that valid ID mappings are:

426 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

– not stored, even if provided by applications

– optionally stored if provided by an application or identified using EIM

– required, so that the operation to store information in the Identity Cache will

fail if a valid ID mapping is not provided by an application or identified using

EIM.

An expiration time for stored mappings can also be configured.

v specify, for applications running on z/OS, defaults for connecting to the Identity

Cache.

Configuring user ID mapping

You can configure the Identity Cache to specify how mappings to local z/OS user

IDs should be handled. These configuration options can be specified in the

IRR.ICTX.DEFAULTS.sysid or IRR.ICTX.DEFAULTS profile in the LDAPBIND class.

v The USEMAP configuration option specifies whether to accept or ignore user ID

mappings provided by applications. If you specify USEMAP(YES), and an

application provides a valid mapping to a local z/OS user ID, it will be stored in

the Identity Cache. If you specify USEMAP(NO), application-provided ID

mappings will be ignored.

v The DOMAP configuration option specifies whether or not EIM services should

be used to map a user ID stored by the application in the Identity Cache to a

local z/OS user ID. If you specify DOMAP(YES), an EIM lookup operation will be

used to find the ID mapping. If a mapping is found, it will be stored in the Identity

Cache. If you specify DOMAP(NO), the Identity Cache will not use EIM to find a

mapping.

If DOMAP(YES) is used, the Identity Cache needs to be fully configured to

access the EIM domain. See “Configuring and setting up EIM” on page 429 for

more information.

v The MAPREQUIRED configuration option specifies whether or not a mapping to

a local z/OS user ID is required. If MAPREQUIRED(YES) is specified and no

valid mapping is provided by the application or found using EIM, the application

request to store information in the Identity Cache will fail. If MAPREQUIRED(NO)

is specified, then valid ID mappings will, if provided by the application or found

using EIM, be stored in the Identity Cache, but will not be required.

The following are the default user ID mapping settings:

v USEMAP(YES) — user ID mappings provided by applications are accepted

v DOMAP(NO) — the Identity Cache does not perform mapping itself

v MAPREQUIRED(NO) — there is no requirement for a user ID mapping to be

stored with user information

The following table summarizes the combined effect of the various configuration

option settings.

 Table 48. user ID mapping configuration settings

USEMAP DOMAP MAPREQUIRED Effect

NO NO NO The Identity Cache will not use an application

provided mapping to a z/OS user ID and it will

not use EIM to find a mapping. Even if an

application mapping is provided, no mapping is

stored.

Chapter 13. The z/OS Identity Cache 427

Table 48. user ID mapping configuration settings (continued)

USEMAP DOMAP MAPREQUIRED Effect

NO NO YES The Identity Cache will not use an application

provided mapping to a z/OS user ID and it will

not use EIM to find a mapping. A mapping is

required, so the Identity Cache will return an

error.

NO YES NO The Identity Cache will not use an application

provided mapping to a z/OS user ID. It will use

EIM to find a mapping. If a mapping is found, it

will be stored. If no mapping is found, the

Identity Cache will not return an error.

NO YES YES The Identity Cache will not use an application

provided mapping to a z/OS user ID. It will use

EIM to find a mapping. If a mapping is found, it

will be stored. If no mapping is found, the

Identity Cache will return an error.

YES NO NO If an application provides a mapping to a z/OS

user ID, it will be stored. The Identity Cache will

not use EIM to find a mapping. If no mapping is

provided, the Identity Cache will not return an

error.

YES NO YES If an application provides a mapping to a z/OS

user ID, it will be stored. The Identity Cache will

not use EIM to find a mapping. If no mapping is

provided, the Identity Cache will return an error.

YES YES NO If an application provides a mapping to a z/OS

user ID, the Identity Cache will store it. If not,

the Identity Cache will use EIM to find a

mapping to store. If no mapping is provided or

found, the Identity Cache will not return an error.

YES YES YES If an application provides a mapping to a z/OS

user ID, the Identity Cache will store it. If not,

the Identity Cache will use EIM to find a

mapping to store. If no mapping is provided or

found, the Identity Cache will return an error.

Since user ID mappings can change over time, a user ID mapping stored in the

Identity Cache will expire. By default, a user ID mapping will be stored in the

Identity Cache for 1 hour, but you can set this to a shorter interval using the

MAPPINGTIMEOUT configuration option. The MAPPINGTIMEOUT interval is

specified in seconds, and valid values range from 1 to 3600.

A copy of the current configuration settings is kept in-storage to allow fast access to

the values. The configuration settings can be defined in an

IRR.ICTX.DEFAULTS.sysid profile in the LDAPBIND class. For example:

RDEFINE LDAPBIND IRR.ICTX.DEFAULTS.SYSA ICTX(USEMAP(NO) DOMAP(YES)

MAPREQUIRED(YES) MAPPINGTIMEOUT(1800)) EIM(LOCALREGISTRY(MyZOSRegistry))

This example defines the settings for the system with a system ID of SYSA, and

establishes the following rules:

v Because USEMAP(NO) is specified, any mappings provided by the application

are ignored.

428 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

v Because DOMAP(YES) is specified, the Identity Cache itself will extract

mappings from EIM. Because LOCALREGISTRY(MyZOSRegistry) is specified,

the Identity Cache will use the EIM registry name of MyZOSRegistry when

looking for mappings in the configured EIM domain.

v Because MAPREQUIRED(YES) is specified, any requests to store user identity

information are rejected if a mapping can’t be found in EIM.

v Because MAPPINGTIMEOUT(1800) is specified, the mappings to RACF user IDs

that are stored in the cache can be reused for 30 minutes instead of the default 1

hour.

These same values could be stored in a profile with the name

IRR.ICTX.DEFAULTS. However, be careful using this because applications on other

systems that are sharing the RACF database may also default to using this same

profile.

The final step to making the settings take effect is that the LDAPBIND class must

be active and RACLISTed. The entire set of field values must be specified or

defaulted to in the profile before the in-storage copy of the fields is updated.

Configuring and setting up EIM: When the Identity Cache is configured to do an

EIM lookup; an EIM domain needs to be set up. This domain is a directory on an

IBM TDS server which contains EIM data for an enterprise, and is a collection of all

EIM identifiers, associations, and user registries that are defined in that location.

EIM clients participate in the domain by using the domain data for EIM lookup

operations. In order for Identity Cache to do a lookup, the EIM domain must contain

the required data for mapping a user identity defined remotely to a user identity

defined locally. The IBM TDS server that hosts your EIM domain can run on a z/OS

or non-z/OS system. See Part 1, “EIM concepts and use,” on page 1 for more

information on how to set up your EIM domain.

Once you have set up your EIM domain, you will also need to use RACF

commands to give the Identity Cache access to the EIM domain by defining the

domain name, the distinguished name, and password which will be used for IBM

TDS binding. See “Setting up default domain LDAP URL and binding information”

on page 68 for more information about how to do this.

If you choose to create a profile for IBM TDS binding information, you will need to

update the RACF user ID with this information. The user ID you will need to update

depends on whether the request is local or remote. If the request is remote, you will

need to update the user ID used in the LDAP bind operation. If the request is local,

you will need to update the user ID under which the application is running. For

example, to update the RACF user ID IBMUSER, you would use the following

command:

ALU IBMUSER EIM(LDAPPROF("+ racfProfile +"))

Configuring Identity Cache connection defaults

Applications running on z/OS and using the Identity Cache may choose to use the

configured Identity Cache for that system. That cache can reside on another z/OS

box or on the local z/OS system. To access a cache running on a remote system,

the command that would need to be issued is:

RDEFINE LDAPBIND IRR.ICTX.DEFAULTS.sysid PROXY(LDAPHOST(hostname)

BINDDN("racfid=userid,cn=ictx") BINDPW(password))

The LDAPBIND class needs to be active and RACLISTed so that the LDAPHOST

name is stored in the in-storage copy of the values.

Chapter 13. The z/OS Identity Cache 429

The application’s RACF user ID also requires READ access to the IRR.RDCEKEY

profile in the FACILITY class, so that the Identity Cache can retrieve remote

configuration information from RACF.

To get better performance where possible, add the APPLDATA field to the ICTX

defaults profile. It should contain the IBM TDS host name given to the local Identity

Cache.

Configuring z/OS sysplex for the Identity Cache

If using the Identity Cache on more than one system in a z/OS sysplex, you must

ensure that RACF is enabled for sysplex communication and that the RACF

database used by each member of the sysplex is synchronized. RACF recommends

that all systems enabled for sysplex communication and sharing the same RACF

database be members of the same sysplex. Doing this prepares you for RACF

sysplex data sharing, and ensures that commands are propagated to all members

of the sysplex.

For information on enabling RACF for sysplex communication, refer to z/OS

Security Server RACF General User’s Guide

430 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Chapter 14. ICTX Java API

The ICTX Java API is the primary interface for working with the z/OS Identity

Cache. The z/OS Identity Cache (described in Chapter 13, “The z/OS Identity

Cache,” on page 423) can be used by applications to communicate user

authentication information across security domain boundaries. An application

running on a z/OS or non-z/OS system can use the ICTX Java API to store identity

context information in the Identity Cache on the local, or on a remote, z/OS system.

The ICTX Java API provides two logical sets of services – one for specifying and

parsing authentication information, and one for storing that information in, and

retrieving it from, the z/OS Identity Cache. These two logical sets of services are

provided in three packages.

v The /com/ibm/ictx/authenticationcontext package contains interfaces and

public classes for specifying and parsing user authentication information called

an authentication context. The authenticating application uses the classes and

methods provided in this package to build an authentication context for a user,

and ultimately transforms it into an identity context object that can be stored into

a z/OS Identity Cache. The terms authentication context and identity context are

largely synonymous; the difference is that an identity context is just an array of

bytes that can be stored in, and retrieved from, the z/OS Identity Cache. The

authenticating application specifies the authentication context information using

the various classes in this package, and then builds the identity context so that

information can be stored in the z/OS Identity Cache. The application that

retrieves the identity context can use the classes and methods of this class to

parse the identity context for the authentication context information supplied by

the authenticating application.

v The /com/ibm/ictx/identitycontext package contains interfaces and public

classes for storing an identity context in, and retrieving an identity context from,

the z/OS Identity Cache. Two storage mechanism classes are provided in this

package for interacting with a z/OS Identity Cache. The LdapStorageMechanism

class is designed for applications that will access a z/OS Identity Cache remotely

using a z/OS IBM TDS server configured with ICTX extended operations, and the

zOSStorageMechanism class is for applications that are accessing a z/OS

Identity Cache locally. A special factory class (StorageMechanismFactory) for

instantiating an object of the appropriate storage-mechanism class (based on the

location of the executing code, certain configuration settings, and information

supplied by the application) is also provided in this package.

v The /com/ibm/ictx/util package contains utility classes used by the classes in

the other two packages. Classes are provided for representing an identity context

and exceptions thrown by other classes.

The ICTX Java API is provided in the ictx.jar file, which is located in the

/usr/lpp/eim/lib HFS directory.

The information provided here is only an overview of the ICTX Java API. While the

interfaces and classes are listed, and the basic tasks an application can perform

are summarized, detailed syntax information is not provided. For full details on the

ICTX Java API, see the reference documentation provided in Javadoc format at:

http://www.ibm.com/systems/z/os/zos/downloads/

© Copyright IBM Corp. 2002, 2008 431

Configuring the IBM Tivoli Directory Server for remote services

support

The ICTX Java APIs use an IBM Tivoli Directory Server client to send authentication

information to the server. The ICTX extended operations support provides the

database functions for this information. To enable this, the IBM TDS configuration

file must have a section that identifies the ICTX extended operations support.

To enable ICTX extended operations support, do the following:

v create a new section in the IBM Tivoli Directory Server SLAPDCNF configuration

file by adding the following lines:

ICTX extended operations support section

plugin clientOperation ITYBIC31 ICTX_INIT "CN=ICTX"

This statement must appear before any database definitions within the file.

v You must ensure the EIM libraries can be located via the IBM TDS LIBPATH. Add

the following LIBPATH environment variable:

LIBPATH=/usr/lib

This statement should appear in the file specified by the ENVVAR DD in the JCL

for the IBM TDS started task.

/com/ibm/ictx/authenticationcontext package

The /com/ibm/ictx/authenticationcontext package contains interfaces and public

classes for specifying and parsing user authentication information. The

authenticating application uses the classes and methods provided in this package to

build an authentication context for a user, and ultimately transforms it into an

IdentityContext object that can be stored into a z/OS Identity Cache. The application

that retrieves the IdentityContext object can use the classes and methods of this

class to parse the identity context for the information supplied by the authenticating

application.

The following table lists the interfaces and classes provided in the

/com/ibm/ictx/authenticationcontext package. For complete information on these

interfaces and classes, refer to the ICTX Java API reference documentation

provided in Javadoc format at:

http://www.ibm.com/systems/z/os/zos/downloads/

 Table 49. Interfaces and classes in the com.ibm.ictx.authenticationcontext package

Interface Class Description

ApplicationInfo An ApplicationInfo object contains information about a

particular application within the network.

AuthenticationContextBase Type1AuthenticationContext The AuthenticationContextBase interface represents

authentication information and is implemented by the

Type1AuthenticationContext class.

AuthenticationContextMa

nagerBase

Type1AuthenticationCo

ntextManager

The AuthenticationContextManagerBase interface

encapsulates methods for working with an authentication

context, and is implemented by the

Type1AuthenticationContextManager class.

AuthenticationInfo An AuthenticationInfo object contains information about

an authenticated user.

432 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

|
|

|
|

|

Table 49. Interfaces and classes in the com.ibm.ictx.authenticationcontext package (continued)

Interface Class Description

BuildSpecBase BuildSpec1 The BuildSpecBase interface represents the information

required to build an IdentityContext object, and is

implemented by the BuildSpec1 class. Contains

authentication, application, and z/OS mapping

information.

DelegationSpecBase DelegationSpec1 The DelegationSpecBase interface represents the

information required to delegate an IndentityContext

object, and is implemented by the DelegationSpec1

class. Contains application and z/OS mapping

information.

ManifestInfo A ManifestInfo object contains manifest information that

was parsed from an authentication context. An array of

ManifestInfo objects (using a LIFO organization) can be

obtained by the application.

PremappedUserInfo A PremappedUserInfo object contains information about

a mapping from the authenticated user ID to a z/OS

user ID.

The classes and methods for interacting with the z/OS Identity Cache to store and

retrieve an IdentityContext object are organized in the /com/ibm/ictx/
identitycontext package, while the IdentityContext class is provided in the

/com/ibm/ictx/util package. See “/com/ibm/ictx/identitycontext package” on page

438 and “/com/ibm/ictx/util package” on page 442 for more information.

Creating an identity context object from authentication context

information

The following figure illustrates the classes and methods an application can use to

specify authentication context information for a user, and, from that authentication

context information, build an identity context object that can stored in the z/OS

Identity Cache.

AuthenticationInfo object
ApplicationInfo object representing sending application
ApplicationInfo object representing receiving application (optional)
PremappedUserInfo object (optional)

BuildSpec1 object

Type1AuthenticationManager object
buildIdentityContext method

IdentityContext object

Use these objects...

to construct...

pass as argument to...

which returns...

To create an identity context, an application needs to:

1. construct the objects that will be passed as arguments when constructing a

BuildSpec1 object. The objects that will be passed as arguments to the

BuildSpec1 class constructor are:

Chapter 14. ICTX Java API 433

a. an AuthenticationInfo object (authInfo argument) representing user

authentication information. At a minimum, the application provides the name

of the user who was authenticated and the name of the user registry for the

authenticated user. The application can also supply the DNS name of the

host system where the user was authenticated, the mechanism used to

authenticate the user, and the security label associated with this user. In

addition, implementation-specific data can be provided.

b. an ApplicationInfo object (sndAppInfo argument) that represents the current

application. At a minimum, the application provides its identifier name and

an instance name that uniquely identifies it in the network. In addition,

implementation-specific data can be provided.

c. optionally, another ApplicationInfo object (rcvAppInfo argument) — this one

identifying the application that is the intended recipient of the identity

context. The application might want to provide this information so that the

receiving application can verify that it is the intended recipient.

d. optionally, a PremappedUserInfo object (premapped argument) that enables

the application to provide a mapping from the local authenticated user ID to

a z/OS user ID valid on the system hosting the z/OS Identity Cache.

Whether such mappings are required, accepted but not required, or ignored

by the z/OS Identity Cache depends on how the Identity Cache is

configured. See “Configuring user ID mapping” on page 427 for more

information.

2. construct a BuildSpec1 object, which represents the information required to

build an authentication context object, from the objects you created in the

preceding step. The application can specify the AuthenticationInfo object, the

ApplicationInfo object(s) and the PremappedUserInfo object as arguments to the

BuildSpec1 constructor. If the application is not specifying the intended

application recipient for the identity context or is not providing a user ID

mapping, a null value can be specified instead of the ApplicationInfo object or

the PremappedUserInfo object.

When constructing the BuildSpec1 object, the application can also specify a

timeout value representing the number of seconds before the authentication

context should no longer be considered valid. This enables the receiving

application to determine if the authentication context is still valid. By default, the

timeout period is 3600 seconds (1 hour), but the application can set this to a

shorter interval.

3. construct a Type1AuthenticationContextManager object and use its

buildIdentityContext method to create the IdentityContext object. The application

passes the BuildSpec1 object created in the preceding step to the

buildIdentityContext method, which returns the IdentityContext object.

The IdentityContext created contains all the authentication context information

provided by the application in a format that can be stored and retrieved from the

z/OS Identity Cache using classes and methods provided in the

/com/ibm/ictx/identitycontext package. The receiving application will be able to

parse this IdentityContext object to get a Type1AuthenticationContext from which it

can retrieve the authentication information. See “Parsing an identity context object

for authentication context information” on page 436 for more information.

Once the authenticating application has created an IdentityContext object, it can

store it in the z/OS Identity Cache as described in “Storing an identity context object

in the z/OS Identity Cache” on page 441. Alternatively, it could forward the

IdentityContext to another ICTX application to store into the Identity Cache (as

described in “Delegating an identity context object” on page 435).

434 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Delegating an identity context object

When authentication context information is initially generated into an IdentityContext

object, a manifest entry is created. When an application passes an identity context

reference to another application, that receiving application can later obtain a

ManifestInfo object, and from it ascertain the application that created the

authentication context, the intended receiving application (if provided by the sending

application), and any user ID mapping specified by the sending application.

If the authenticating application forwards the IdentityContext object to another ICTX

application, it can delegate the IdentityContext object. Delegating an IdentityContext

object creates a new IdentityContext object from the first, with an additional

manifest entry indicating the current application, the receiving application, and

updated mapping information (if necessary). The receiving application can get an

array of ManifestInfo objects from which it can ascertain the application that created

the authentication context, as well as the application(s) to which it was delegated.

For example, the authenticating application could create an IdentityContext object

with the authentication context information for a particular user, which it delegates to

another application to perform an EIM lookup. That application delegates it to a

third application, supplying a user ID mapping. The third application stores the

IdentityContext object in the z/OS Identity Cache. The receiving application will be

able to parse the IdentityContext object for an array of three ManifestInfo objects,

from which it can identify the application that originally created the IdentityContext

object, as well as each application to which it was delegated. In this way, a history

of the identity context is kept within the identity context itself.

The following figure illustrates the classes and methods an application can use to

delegate an identity context object to create a new identity context object with an

additional manifest entry.

ApplicationInfo object representing sending application
ApplicationInfo object representing receiving application (optional)
PremappedUserInfo object (optional)

DelegationSpec1 object

Type1AuthenticationManager object
delegateIdentityContext method

IdentityContext object

Use these objects...

to construct...

pass as argument to...

which returns...

To delegate an identity context, an application needs to:

1. construct the objects that will be passed as arguments when constructing a

DelegationSpec1 object. The objects that will be passed as arguments to the

DelegationSpec1 class constructor are:

a. an ApplicationInfo object that represents the current application. At a

minimum, the application provides its identifier name and an instance name

that uniquely identifies it in the network. In addition, implementation-specific

data can be provided.

Chapter 14. ICTX Java API 435

b. optionally, another ApplicationInfo object — this one identifying the

application to which the identity context is being delegated. The application

might want to provide this information so that the receiving application can

verify that it is the intended recipient.

c. optionally, a PremappedUserInfo object that enables the application to

provide a mapping from the local authenticated user ID to a z/OS user ID

valid on the system hosting the z/OS Identity Cache. Whether such

mappings are required, accepted but not required, or ignored depends on

how the z/OS Identity Cache is configured. See “Configuring user ID

mapping” on page 427 for more information.

2. construct a DelegationSpec1 object, which represents the information required

to delegate an identity context, from the object(s) you created in the preceding

step. The application can specify the ApplicationInfo object(s) and the

PremappedUserInfo object as arguments to the DelegationSpec1 constructor. If

the application is not specifying the intended application recipient for the identity

context or is not providing a user ID mapping, a null value can be specified

instead of the ApplicationInfo object or the PremappedUserInfo object.

When constructing the DelegationSpec1 object, the application can also specify

a timeout value representing the number of seconds before the authentication

context should no longer be considered valid. This enables the receiving

application to determine if the authentication context is still valid. By default, the

timeout period is 3600 seconds (1 hour), but the application can set this to a

shorter interval.

3. use the delegateIdentityContext method of the

Type1AuthenticationContextManager object to create a new IdentityContext

object with an additional manifest entry. The application passes the

DelegationSpec1 object created in the preceding step along with the original

IdentityContext object to the delegateIdentityContext method, which returns the

new IdentityContext object.

Parsing an identity context object for authentication context

information

An authenticating application specifies authentication context information to create

an IdentityContext object which can be stored in the z/OS Identity Cache. The

IdentityContext object is a byte array that can be stored and retrieved. Once

retrieved from the z/OS Identity Cache, it can be parsed by an application to

examine the authentication context information. The following figure illustrates how

a receiving application can parse an IdentityContext object to ascertain the

authentication context information for a user.

getAuthenticationInfo method

Type1AuthenticationContext object

Type1AuthenticationManager object
getAuthenticationContext method

IdentityContext object

pass as argument to...

which returns...

getManifests method

getAuthenticationInfo object

array of
ManifestInfo objects

getSender method

getReceiver method

getPremapped method

ApplicationInfo object

ApplicationInfo object

PremappedUserInfo object

436 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

To parse an identity context object for authentication context information, an

application needs to:

1. construct a Type1AuthenticationContextManager object and use its

getAuthenticationContext method to parse the identity context byte array. The

application passes the IdentityContext object as an argument to the

getAuthenticationContext method, which returns a Type1AuthenticationContext

object.

2. from the Type1AuthenticationContext object, the applicaiton can obtain

information about the authenticated user, as well as the authenticating

application that built the IdentityContext object and any applications to which the

IdentityContext object was delegated.

To obtain information about the authenticated user, an application:

a. calls the getAuthenticationInfo method of the Type1AuthenticationContext

class. The getAuthenticationInfo method returns an AuthenticationInfo object.

b. calls methods of the AuthenticationInfo class to obtain the desired

information:

 Table 50. Methods provided by the AuthenticationInfo class

This method: Returns:

getUser the name of the user who was authenticated. It may be used as the

source user in a mapping lookup operation.

getRegistry the name of the user registry for the authenticated user. This registry

name may be used by a mapping lookup operation.

getMechanism the mechanism used to authenticate the user.

getHostName the DNS name of the host system where the user was authenticated.

getSecurityLabel the security label associated with this user.

getImplSpecific implementation-specific data.

To obtain information about the authenticating application (and any applications

to which the IdentityContext was delegated), the application:

a. calls the getManifests method of the Type1AuthenticationContext class. The

getManifests method returns an array of ManifestInfo objects — one

ManifestInfo object recording the information supplied when the

IdentityContext was created, and an additional ManifestInfo object for each

time the IdentityContext was delegated. The ManifestInfo objects are in

LIFO order.

b. calls methods of the ManifestInfo class as needed to obtain information

about the manifest (such as the time it was created, and how much longer it

is considered valid) or objects representing the sending application, the

receiving application, and any User ID mappings provided by the sending

applicaiton.

 Table 51. Methods provided by the ManifestInfo class

This method: Returns:

getSender an ApplicationInfo object representing the sending application. Using

methods of this class, the current application can obtain information about

the sending application. It can use:

v The getIdentifier method to obtain the identifier name that has been

defined for the application.

v The getInstanceName method to obtain the instance name that

uniquely identifies the application in the network.

v The getImplSpecific method to obtain implementation-specific data.

Chapter 14. ICTX Java API 437

Table 51. Methods provided by the ManifestInfo class (continued)

This method: Returns:

getReceiver an ApplicationInfo object representing the application information for the

receiving application. It can use:

v The getIdentifier method to obtain the identifier name that has been

defined for the application.

v The getInstanceName method to obtain the instance name that

uniquely identifies the application in the network.

v The getImplSpecific method to obtain implementation-specific data.

getPremapped a PremappedUserInfo object representing a user ID mapping provided by

the sending application. Using methods of this class, the current

application can obtain the user mapping as well as information about the

mapping operation. It can use:

v The getUser method to obtain the name of the premapped target user.

v The getRegistry method to obtain the name of the target user registry

that was used for the mapping lookup operaton.

v The getMappingQualifiers method to obtain the additional information

that may have been used for the mapping operation.

v The getMappingSource method to obtain the type of information was

used as the source for the mapping lookup operation.

v The getImplSpecific method to obtain implementation-specific data.

getCreationTime the time that this manifest was created.

getTimeToLive the remaining time (in seconds) that the manifest information is

considered valid.

getCounter the counter related to this manifest. Each time an authentication context is

delegated, another manifest entry is added. The first manifest entry will

have a counter value of 1. The top manifest entry in the array is the last

manifest entry added to the authentication context.

/com/ibm/ictx/identitycontext package

The /com/ibm/ictx/identitycontext package contains interfaces and public classes

for storing an identity context in, and retrieving an identity context from, the z/OS

Identity Cache. Two storage mechanism classes are provided in this package for

interacting with a z/OS Identity Cache. The LdapStorageMechanism class is

designed for applications that will access a z/OS Identity Cache remotely using a

z/OS IBM TDS server configured with ICTX extended operations, and the

zOSStorageMechanism class is for applications that are accessing a z/OS Identity

Cache locally. A special factory class (StorageMechanismFactory) for instantiating

an object of the appropriate storage-mechanism class based on system

configuration settings and/or information supplied by the application is also provided

in this package.

The following table lists the interfaces and classes provided in the

/com/ibm/ictx/identitycontext package. For complete information on these

interfaces and classes, refer to the ICTX Java API reference documentation

provided in Javadoc format at:

http://www.ibm.com/systems/z/os/zos/downloads/

438 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 52. Interfaces and classes in the com.ibm.ictx.authenticationcontext package

Interface Class Description

StorageMechanism LdapStorageMechanism The LdapStorageMechanism class implements the

StorageMechanism interface (which defines the methods

required by a storage mechanism to support identity

contexts). An LdapStorageMechanism object allows remote

access to a z/OS Identity Cache. Remote interaction with

the z/OS Identity Cache is achieved using a z/OS IBM TDS

server configured with ICTX extended operations.

zOSStorageMechanism The zOSStorageMechanism class implements the

StorageMechanism interface (which defines the methods

required by a storage mechanism to support identity

contexts). An zOSStorageMechanism object allows local

access to the z/OS Identity Cache. Operations are

performed on the local system using Java JNI. This class is

only valid on z/OS systems.

IdentityContextCredential An IdentityContextCredential object represents a credential

that enables an application to retrieve an IdentityContext

object from the z/OS Identity Cache.

StorageMechanismFactory The StorageMechanismFactory object is a special factory

object an application can use to obtain the correct type of

storage mechanism object (either an

LdapStorageMechanism object or a zOSStorageMechanism

object) based on the location of executing code and certain

configuration information.

The classes and methods for creating an IdentityContext object from authentication

context information, and parsing an IdentityContext object to retrieve the

authentication context information, are organized in the /com/ibm/ictx/
authenticationcontext package. The IdentityContext class is provided in the

/com/ibm/ictx/util package. See “/com/ibm/ictx/authenticationcontext package” on

page 432 and “/com/ibm/ictx/util package” on page 442 for more information.

Creating a storage mechanism object for interacting with the z/OS

Identity Cache

A storage mechanism object enables an application to interact with a local or

remote z/OS Identity Cache to store and retrieve IdentityContext objects. To access

the Identity Cache on a remote z/OS system, an application uses an

LdapStorageMechanism object. To access an Identity Cache that is local to an

application running on z/OS, an application uses a zOSStorageMechanism object.

In addition to the LdapStorageMechanism and zOSStorageMechanism class

constructors, a special factory class (StorageMechanismFactory) is provided for

creating the correct type of storage mechanism object based on the location of the

executing code, certain configuration settings, and information provided by the

application.

v The LdapStorageMechanism class constructor creates a storage mechanism

object that enables an application running on a z/OS or non-z/OS system to

interact with an Identity Cache on a remote z/OS system. In order to connect to

the remote system, a z/OS IBM TDS server with ICTX extended operations will

need to be identified, and bind credentials will need to be supplied.

An application running on a non-z/OS system must provide this information in a

hash table supplied to the LdapStorageMechanism class constructor. The hash

table should include values specifying:

Chapter 14. ICTX Java API 439

– a URL for the z/OS IBM TDS server that provides remote access to the

Identity Cache, such as ldap://some.big.host

– a bind DN

– a bind password

For example:

Hashtable bindInfo = new Hashtable();

 bindInfo.put(Context.PROVIDER_URL, "ldap://myserver.com)");

 bindInfo.put(Context.SECURITY_PRINCIPAL, "racfid=user01,cn=ICTX");

 bindInfo.put(Context.SECURITY_CREDENTIALS, "password");

An application running on a z/OS system can also provide this information in a

hash table supplied to the LdapStorageMechanism class constructor, or it could

instead supply this information as default values in an in-storage copy of the

IRR.ICTX.DEFAULTS profile in the LDAPBIND class. See “Configuring the z/OS

Identity Cache” on page 426 for more information.

v The zOSStorageMechanism class constructor creates a storage mechanism

object that provides direct access to the z/OS Identity Cache for applications

running locally.

v The getStorageMechanism method of the StorageMechanismFactory class

returns either the zOSStorageMechanism or LdapStorageMechanism based on:

– whether the application is running on a z/OS or non-z/OS system.

– an input hash table object passed as an argument to the

getStorageMechanism method specifying a URL for a z/OS IBM TDS server, a

bind DN, and a bind password.

– for z/OS applications, default connection information specified in an in-storage

copy of the IRR.ICTX.DEFAULTS profile in the LDAPBIND class.

To determine which storage mechanism to run, the factory class uses the following

criteria:

v If the Java application is not running on z/OS:

– If no URL for a z/OS IBM TDS server was provided by the application, an

error exception is returned.

– If a URL is provided by the application, the application can access the remote

Identity Cache, and an instance of the LdapStorageMechanism is returned.

v If the Java application is running on z/OS:

– If no URL is provided and the in-storage copy of the IRR.ICTX.DEFAULTS

profile has no URL, then access to the local Identity Cache is assumed, and

an instance of the zOSStorageMechanism class is returned.

– If a URL is provided, or the in-storage copy of the IRR.ICTX.DEFAULTS

profile has a URL, that matches the value in the in-storage copy of the

APPLDATA field, then access to the local Identity Cache is configured and an

instance of the zOSStorageMechanism class is returned.

– Otherwise, if the URL value from the hash table, or the in-storage copy of the

IRR.ICTX.DEFAULTS profile, doesn’t match the value in the in-storage copy

of the APPLDATA field, access is required to a remote Identity Cache and an

instance of the LdapStorageMechanism class is returned.

The following table shows the possible scenarios for accessing the Identity Cache.

Note that the StorageMechanismFactory returns a zOSStorageMechanism object

when the Identity Cache is local, and an LDAPStorageMechanism object when

remote.

440 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 53. Identity Cache calling scenarios

Application z/OS Setup

Provides

URL?

Running on

z/OS?

In-storage

ICTX defaults

LDAPHOST

value

In-storage

ICTX defaults

APPLDATA

value

Identity Cache

access type

Return Code Storage

mechanism

object

returned by

the factory

null No n/a n/a – Error null

Yes No n/a n/a Remote Success LDAP

null Yes No data Any Local Success z/OS

null Yes URL No data Remote Success LDAP

null Yes URL URL doesn't

match

LDAPHOST

Remote Success LDAP

null Yes URL URL does

match

LDAPHOST

Local Success z/OS

Yes Yes Any No data Remote Success LDAP

Yes Yes Any URL doesn't

match

parameter

Remote Success LDAP

Yes Yes Any URL does

match

parameter

Local Success z/OS

Storing an identity context object in the z/OS Identity Cache

To store an IdentityContext object in the z/OS Identity Cache, the application uses

the storeIdentityContext method of the storage mechanism object that is providing

access to the Identity Cache — either an LdapStorageMechanism or

zOSStorageMechanism object. The application specifies the IdentityContext object

as an argument to the storeIdentityContext method.

The storeIdentityContext method returns an IdentityContextCredential object for the

stored identity context. An IdentityContextCredential object represents a credential

that enables an application to retrieve an IdentityContext object from the z/OS

Identity Cache. An IdentityContextCredential object consists of a user name and a

reference. The user name is a flag that indicates the data is stored in an Identity

Cache, and the reference is what is needed to retrieve the data from the Identity

Cache. The user name and reference can be returned by the getUserName and

getReference methods, and then forwarded to the application that needs to retrieve

the IdentityContext object.

Retrieving an identity context object from the z/OS Identity Cache

To retrieve an IdentityContext object from the z/OS Identity Cache, an application

uses the retrieveIdentityContext method of the storage mechanism object that is

providing access to the Identity Cache — either an LdapStorageMechanism or

zOSStorageMechanism object. The application specifies an

IdentityContextCredential object representing the stored identity context as an

argument to the retrieveIdentityContext method, which returns the IdentityContext

object.

Chapter 14. ICTX Java API 441

An IdentityContextCredential object consists of a user name and a reference that

will have been forwarded from the application that stored the IdentityCache object

to the application that needs to retrieve it. Using the user name and reference

strings, the application constructs the IdentityContextCredential object, and passes

it to the retrieveIdentityContext method to obtain the IdentityContext.

/com/ibm/ictx/util package

The /com/ibm/ictx/util package contains utility classes used by the classes in the

other two packages. Classes are provided for representing an identity context and

exceptions thrown by other classes.

 Table 54. Interfaces and classes in the com.ibm.ictx.authenticationcontext package

Class Description

IdentityContext An IdentityContext object contains the information for an identity context.

IdentityContextException An IdentityContextException object is an exception thrown by ICTX API class.

Sample ICTX application

The following sample code illustrates the steps an application might perform to

store an identity context in, and later retrieve it from, the z/OS Identity Cache. The

code for both the authenticating application (which constructs the IdentityContext

object and stores it in the Identity Cache), and the server application (which

retrieves the IdentityContext object and parses it for the user information) is shown.

This first example shows the code for the authenticating application. It builds the

IdentityContext object, creates a storage mechanism object for interacting with the

z/OS Identity Cache, and stores the IdentityContext object into the Identity Cache. It

then passes the user name and a reference for the IdentityContextCredential to the

server application so that it can retrieve the IdentityContext object.

package storeretrievesample;

import java.util.Properties;

import javax.naming.directory.InitialDirContext;

import com.ibm.ictx.authenticationcontext.ApplicationInfo;

import com.ibm.ictx.authenticationcontext.AuthenticationInfo;

import com.ibm.ictx.authenticationcontext.BuildSpec1;

import com.ibm.ictx.authenticationcontext.PremappedUserInfo;

import com.ibm.ictx.authenticationcontext.Type1AuthenticationContextManager;

import com.ibm.ictx.identitycontext.IdentityContextCredential;

import com.ibm.ictx.identitycontext.StorageMechanism;

import com.ibm.ictx.identitycontext.StorageMechanismFactory;

import com.ibm.ictx.util.IdentityContext;

import storeretrievesample.RetrieveSample;

/**

 * Class: StoreSample

 *

 * This is a sample of how to store a user name that has been authenticated in

 * the z/OS Identity Cache using the ibm.com.ictx interfaces and classes.

 * Typically, an application that authenticates a user will store the

 * user information in the Identity Cache.

 *

 */

public class StoreSample {

442 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

/**

 * Method: storeUserInCache

 *

 * This is a sample method that stores the authenticated user’s name in the

 * Identity Cache.

 *

 * @param userName

 * The name of the authenticated user

 * @param userRegistry

 * The name of the registry used for authentication. This

 * registry name must be defined to EIM if the Identity Cache is

 * going search EIM for a mapping from the user name to a z/OS

 * user id.

 * @param registryType

 * The type or kind of registry it is, i.e. RACF, LDAP, Tivoli Access Manager

 * @param location

 * This is where the authentication event occurred in the network. It

 * can be a DNS Host name or the name of an application instance. Something

 * That allows an auditor to identify where the user was authenticated.

 * @return an identity context credential;

 * @throws Exception

 */

 IdentityContextCredential storeUserInCache(String userName,

 String userRegistry, String registryType, String location)

 throws Exception {

 // Application constants for use with the identity context APIs

 final String NO_APPLICATION_IDENTIFIER = null;

 final String NO_APPLICATION_INSTANCE_NAME = null;

 final String NO_SECURITY_LABEL = null;

 final String NO_IMPLEMENTATION_SPECIFIC_DATA = null;

 // Create an identity context from the user information. There

 // is no application or premapped information in this example.

 AuthenticationInfo userInfo = new AuthenticationInfo(userName,

 userRegistry, location, registryType, 1 NO_SECURITY_LABEL,

 NO_IMPLEMENTATION_SPECIFIC_DATA);

 ApplicationInfo sendingAppInfo = null; // No sending application info

 ApplicationInfo receivingAppInfo = null; // No receiving application info

 PremappedUserInfo premappedUserInfo = null; // No premapping

 int timeoutValue = 300; // This user information is good for 5 minutes

 BuildSpec1 bldInfo = new BuildSpec1(userInfo, sendingAppInfo,

 receivingAppInfo, premappedUserInfo, timeoutValue);

 Type1AuthenticationContextManager cm = new Type1AuthenticationContextManager();

 IdentityContext iContext = cm.buildIdentityContext(bldInfo);

 // Store the identity context in the z/OS Identity Cache

 // - Provide the bind credentials

 // - Create the instance of the storage mechanism

 // - Store the identity context getting an identity context credential in return

 Properties iCacheLocation = new Properties();

 iCacheLocation.put(InitialDirContext.PROVIDER_URL,

 "ldap://some.zOS.ldap"); // the Cache location

 iCacheLocation.put(InitialDirContext.SECURITY_PRINCIPAL,

 "racfid=USER01,cn=ictx"); // the bind dn

 iCacheLocation.put(InitialDirContext.SECURITY_CREDENTIALS,

 "secret"); // the bind password

 StorageMechanismFactory smf = new StorageMechanismFactory();

 StorageMechanism sm = smf.getStorageMechanism(iCacheLocation);

 IdentityContextCredential userHandle = sm.storeIdentityContext(

 iContext, timeoutValue);

 return userHandle;

 } // storeUserInCache

Chapter 14. ICTX Java API 443

/**

 * Method: main

 *

 * This method stores information about an authenticated

 * user in the z/OS Identity Cache and passes the Identity

 * Cache credentials to a service that only accepts a

 * user id and password.

 *

 */

 public void main() {

 String userName = "cn=Joe User,c=us";

 String userRegistry = "Some Ldap User Registry";

 String registryType = "LDAP";

 String location = "ldap://Some.AIX.Directory";

 try {

 // Step 1: Authenticate the user

 // Step 2: Store the authenticated user’s info in the Identity Cache

 IdentityContextCredential userh = storeUserInCache(userName,

 userRegistry,registryType,location);

 // Step 3: Pass the identity context userid and reference

 // to the service that normally accepts a userID and password

 RetrieveSample rs = new RetrieveSample();

 rs.sampleService(userh.getUserName(), userh.getReference());

 } catch (Exception e) {

 System.out.println("Exception Occurred: " + e);

 }

 } // main

This next example shows the code for the server application. It constructs an

IdentityContextCredential object using the user name and reference string passed

by the authenticating application. It then creates a storage mechanism object for

interacting with the z/OS Identity Cache, and retrieves the IdentityContext object. It

then parses this object to get the user authentication information.

package storeretrievesample;

import java.util.Properties;

import javax.naming.directory.InitialDirContext;

import com.ibm.ictx.authenticationcontext.AuthenticationInfo;

import com.ibm.ictx.authenticationcontext.Type1AuthenticationContext;

import com.ibm.ictx.authenticationcontext.Type1AuthenticationContextManager;

import com.ibm.ictx.identitycontext.IdentityContextCredential;

import com.ibm.ictx.identitycontext.StorageMechanism;

import com.ibm.ictx.identitycontext.StorageMechanismFactory;

import com.ibm.ictx.util.IdentityContext;

/**

 * Class: RetrieveSample

 *

 * This Java class retrieves the identity context stored by

 * the StoreSample class in the z/OS Identity Cache.

 */

public class RetrieveSample {

 /**

 * Method: getUserInfoFromCache

 *

 * This method accepts the userID and reference from an identity

 * identity context credential and retrieves the identity context

444 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

* from the z/OS Identity Cache.

 *

 * @param userId the userId portion of an identity context credential.

 * @param userPassword the reference portion of an identity context credential.

 * @return an identity context

 * @throws Exception

 */

 IdentityContext getUserInfoFromCache(String userId, String reference) throws Exception {

 Properties icacheLocation = new Properties();

 icacheLocation.put(InitialDirContext.PROVIDER_URL,

 "ldap://some.zOS.ldap"); // the Identity Cache location

 icacheLocation.put(InitialDirContext.SECURITY_PRINCIPAL,

 "racfid=USER02,cn=ictx"); // the bind dn

 icacheLocation.put(InitialDirContext.SECURITY_CREDENTIALS,

 "secret"); // the bind password

 StorageMechanismFactory smf = new StorageMechanismFactory();

 StorageMechanism sm = smf.getStorageMechanism(icacheLocation);

 IdentityContextCredential iCtxCred =

 new IdentityContextCredential(userId,reference);

 return sm.retrieveIdentityContext(iCtxCred);

 }

 /**

 * Method: findLocalUserId

 *

 * This method performs searchs an EIM domain for the local user id

 * given the userName and registry from an identity context.

 *

 * @param iCtx

 * @return local user id or null

 * @throws Exception

 */

 String findLocalUserId(IdentityContext iCtx)throws Exception {

 // Step 1. Extract the user name and registry from the

 // identity context.

 Type1AuthenticationContextManager acMgr = new Type1AuthenticationContextManager();

 Type1AuthenticationContext ac = (Type1AuthenticationContext)

 acMgr.getAuthenticationContext(iCtx);

 AuthenticationInfo ai = ac.getAuthenticationInfo();

 String sourceUser = ai.getUser();

 String sourceRegistry = ai.getRegistry();

 // Step 2. Contact the mapping service to retrieve the

 // local user ID for the authenticated user.

 return "USER01";

 }

 public void sampleService(String userId, String password) throws Exception {

 String userName = null;

 // Step 1. Authenticate the user

 if (IdentityContextCredential.isIctxUserName(userId)) {

 // Retrieve the identity context for the identity context

 // reference from the Identity Cache

 IdentityContext iCtx = getUserInfoFromCache(userId,password);

 // Call a mapping service to get the local user id for this user.

 userName = findLocalUserId(iCtx);

 } else {

 // This is the authentication check for regular

 // user IDs. Assumes it worked.

 userName = userId;

Chapter 14. ICTX Java API 445

}

 // Step 2. Assert the user identity

 // Step 3. perform the service

 } // sampleService

 }

446 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Chapter 15. Accessing RACF remotely to perform

authorization checks and create audit records

Remote authorization and auditing allows resource managers that do not reside on

z/OS to centralize authorization decisions and security event logging using z/OS

Security Server RACF through the IBM TDS server. These services are provided

through LDAP extended operations. The requests come in the form of a

DER-encoding of the ASN.1 syntax. The following sections provide details on these

remote authorization and auditing requests.

Because there are many mechanisms available for user authentication and

mapping, the remote services do not provide an authentication option. Applications

that use the authorization service are responsible for authenticating users.

Applications that expect users to provide a RACF user ID and password can

authenticate by performing a simple bind to the SDBM component of the IBM Tivoli

Directory Server. For details on how to bind to SDBM refer to IBM Tivoli Directory

Server Administration and Use for z/OS, SC23-5191. If mapping from a non-RACF

user ID to a RACF user ID is to be performed during authentication, another option

is to use the native authentication feature of the LDBM component of the IBM TDS

LDAP server. Configuration and use of the IBM TDS native authentication feature is

also documented in IBM Tivoli Directory Server Administration and Use for z/OS,

SC23-5191.

Note that this information describes remote authorization and audit specifically. For

full details on auditing controls in z/OS, see z/OS Security Server RACF Auditor’s

Guide.

Using remote authorization and audit

The remote authorization and audit services are enabled when the ICTX extended

operations component is configured for IBM Tivoli Directory Server. Refer to

“Configuring the IBM Tivoli Directory Server for remote services support” on page

432 for instructions.

An application or resource manager that uses the remote audit or authorization

LDAP extended operation must be capable of generating a request, sending it

through the network to the appropriate z/OS IBM TDS server, and interpreting the

response from the z/OS IBM TDS server. The following steps represent the typical

sequence of events that are specific to the LDAP extended operations for the

remote authorization and auditing:

1. The application must perform a simple bind to the server using an authorized

racfid=userid,cn=ictx bind distinguished name.

2. The application must build a DER-encoded extended operation request having

the defined ASN.1 syntax that is specific to the audit or authorization request.

That request can then be included with the z/OS IBM TDS server handle and

specific request OID on the LDAP client call, such as

ldap_extended_operation_s(), to build the LDAP message and send it to the

server.

3. The z/OS IBM TDS receives the request and routes it to the ICTX component,

where it is decoded and processed. ICTX verifies the correct syntax and the

requestor’s authority before invoking the SAF authorization check or audit

service to satisfy the request. The result of the SAF service is a DER-encoded

response that LDAP returns.

© Copyright IBM Corp. 2002, 2008 447

4. The application must decode the response in order to interpret the results. A

nonzero LdapResult code indicates the request was not processed by the ICTX

component. A nonzero LdapResult is accompanied by a reason string in the

response that may provide additional diagnostic information.

Note: A zero LdapResult code does not necessarily imply the request was

processed successfully (or for authorization, that a user has the specified

access). It does, however, indicate that an extended operation

ResponseValue was returned. The application should verify that the ICTX

ResponseCode within the ResponseValue indicates success (0). A

nonzero ResponseCode indicates one or more request items resulted in

errors (or unauthorized users). The application should check the

MajorCode within each response item to determine which returned

failures. The application should be aware that ICTX may not return a

response item corresponding to each request item in the event of a

severe error, such as an error encountered in the DER encoding.

The application may send as many requests as needed throughout a single bound

session, and should unbind from IBM TDS when it has finished processing ICTX

requests.

Profile authorizations for working with remote services

In order to recognize that a client is authorized to use remote services, the remote

service requestor or client is required to have specific RACF authorization. User

distinguished names with the suffix cn=ictx bind through the z/OS IBM TDS ICTX

component. These names have the following format:

racfid=userid,cn=ictx

The password for the distinguished name must be the RACF user ID’s password

and this password is validated by RACF. Bind distinguished names are

authenticated using native authentication. Only simple bind is supported. Kerberos

and SSL binds are not supported.

Once accepted as a valid request, the bind user's authorization to use the services

is verified. For remote authorization, the user must have at least READ access to

FACILITY class profile IRR.LDAP.REMOTE.AUTH in order to check the user's own

access to a resource. To check another user's access. the user must have at least

UPDATE access to FACILITY class profile IRR.LDAP.REMOTE.AUTH. For example:

RDEFINE FACILITY IRR.LDAP.REMOTE.AUTH UACC(NONE)

PERMIT IRR.LDAP.REMOTE.AUTH CLASS(FACILITY) ID(BINDUSER)

ACCESS(UPDATE)

For remote auditing requests, the bind user must have at least READ access to

FACILITY class profile IRR.LDAP.REMOTE.AUDIT.

RDEFINE FACILITY IRR.LDAP.REMOTE.AUDIT UACC(NONE)

PERMIT IRR.LDAP.REMOTE.AUDIT CLASS(FACILITY) ID(BINDUSER)

ACCESS(READ)

Authority to use the remote services is determined when the user binds through

ICTX.

The remote audit operation calls the SAF service R_auditx. The service runs under

the identity of the IBM TDS server, which must have the appropriate service

448 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

authorization. The user ID associated with the IBM TDS server must be granted at

least READ access to FACILITY class profile IRR.RAUDITX.

RDEFINE FACILITY IRR.RAUDITX UACC(NONE)

PERMIT IRR.RAUDITX CLASSS(FACILITY) ID(LDAPSRV) ACCESS(READ)

Remote authorization requests

The remote authorization request must contain the DER-encoding of the ASN.1

syntax. The following is the remote authorization request syntax:

Request OID: 1.3.18.0.2.12.66

RequestValue ::= SEQUENCE {

RequestVersion INTEGER,

ItemList SEQUENCE of

 Item SEQUENCE {

 ItemVersion INTEGER,

 ItemTag INTEGER,

 UserOrGroup IA5String,

 Resource IA5String,

 Class IA5String,

 Access INTEGER,

 LogString IA5String

 }}

Where:

RequestValue

The name for the entire sequence of authorization request data.

RequestVersion

The format of the request value. Version 1 indicates a user authorization

request; each individual Item in the ItemList will be an authorization request

for a RACF userid. Version 2 indicates a user authorization or a group

authorization request; each individual Item in the ItemList will be an

authorization request for either a RACF userid or a RACF group.

ItemList

A sequence of one or more items, which allows for multiple authorization

checks within a single ICTX request. The size of the entire encoded

RequestValue should be limited to 16 million bytes unless your encoding

routine or LDAP client imposes a stricter limit. If RequestVersion is 2, the

ItemList can be a mixture of user authorization and group authorization

items.

Item A sequence of data that represents a single authorization check.

ItemVersion

The format of the individual item. Version 1 indicates an

authorization request for a RACF userid. Version 2 indicates an

authorization request for a RACF group.

ItemTag

An integer set by the client for each request item and echoed in

each response item. Its purpose is to assist the client in correlating

multiple request responses, and has no influence on the

authorization logic or logging.

UserOrGroup

If ItemVersion is 1, a RACF userid whose authority is being

Chapter 15. Accessing RACF remotely to perform authorization checks and create audit records 449

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

||

|
|
|
|

|
|
|
|
|

|
|

checked. Its length cannot exceed 8 characters. If the length is

zero, the user value defaults to the user ID associated with the bind

user.

 If ItemVersion is 2, a RACF group ID whose authority is being

checked. Its length must be from 1 and 8 characters. Optimizations

used when performing a userid authorization check are not

available when performing a group ID authorization check. For this

reason, it is likely that group authorization checks will execute more

slowly than userid authorization checks.

Resource

A name to be matched against a RACF profile for authorization

checking. The string may not include blank characters. Its length

may be from 1 to the maximum RACF profile length defined for the

specified class.

Class A defined RACF general resource class. It cannot be DATASET,

USER, or GROUP. Its length may be from 1 to 8 characters.

Access

The level of authority requested. It must be one of the following

integer values:

X’01’ READ

X’02’ UPDATE

X’03’ CONTROL

X’04’ ALTER

LogString

Any character data from 0 to 200 characters in length. It is

appended to an ICTX-defined string in the SMF log record.

The following is the ASN.1 syntax for the remote authorization response message:

Response OID: 1.3.18.0.2.12.67

ResponseValue ::= SEQUENCE {

ResponseVersion INTEGER,

ResponseCode INTEGER,

ItemList SEQUENCE of

 Item SEQUENCE{

 ItemVersion INTEGER,

 ItemTag INTEGER,

 MajorCode INTEGER,

 MinorCode1 INTEGER,

 MinorCode2 INTEGER,

 MinorCode3 INTEGER

 }}

Where:

ResponseValue

The name for the entire sequence of authorization response data.

ResponseVersion

The format of the response value. Version 1 is the only supported format.

ResponseCode

The greatest error encountered while processing the request. See Table 55

on page 451 for more details on supported ResponseCodes.

ItemList

A sequence of one or more items, which allows for multiple authorization

results within a single ICTX response.

450 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

|
|
|

|
|
|
|
|
|

|
|
|
|
|

||
|

|
|
|

|
|
|
|

|
|
|

Item A sequence of data that represents the results from a single authorization

check.

ItemVersion

The format of the individual item. Version 1 is the only supported

format.

ItemTag

An integer echoed from the corresponding request ItemTag. The

purpose of the ItemTag is to assist the client in correlating multiple

request responses. ItemTag has no influence on the authorization

logic or logging.

MajorCode

An integer value representing the result of the authorization check.

See Table 56 for more details on error major codes.

MinorCode1

Additional details about the error. See Table 57 on page 453 for

more details on error minor codes.

MinorCode2

Additional details about the error.

MinorCode3

Additional details about the error.

Remote authorization ResponseCodes

Use the following table to understand the response codes generated from the

remote authorization processing. The ResponseCode represents the greatest error

encountered. You may experience situations in which a request item generates an

error that is not reflected in the ResponseCode, because that value is overridden by

a higher-severity error.

 Table 55. Remote authorization ResponseCodes

ResponseCode

(decimal) Meaning

0 All request items were processed successfully

28 Empty item list. No items are found within the ItemList sequence

of the extended operation request, so no response items are

returned.

61-70 The specified RequestVersion is not supported. Subtract 60 from

the value to determine the highest RequestVersion that the

server supports. ResponseCode 61 indicates the server

supports version 1 requests only. ResponseCode 62 indicates

the highest supported request level is 2.

other Errors or warnings encountered while processing one or more

request items. The value represents the highest MajorCode in

the set of all response items. Verify the major and minor codes

returned for each item.

 Table 56. Remote authorization MajorCodes

MajorCode

(decimal) Meaning Comment

0 Authorized The user has the requested access to the

resource.

Chapter 15. Accessing RACF remotely to perform authorization checks and create audit records 451

||
|
|
|
|

Table 56. Remote authorization MajorCodes (continued)

MajorCode

(decimal) Meaning Comment

2 Warning mode The user has the requested access

because warning mode is enabled for the

resource. Warning mode is a feature of

RACF that allows installations to try out

security policies. Installations can define a

profile with the WARNING attribute. When

RACF performs an authorization check

using the profile, it will log the event (if

there are audit settings) and allow the

authorization check to pass successfully.

The log records can be monitored to

ensure the new policy is operating as

expected before putting the policy into

production by turning off the WARNING

attribute.

4 Undetermined No decision could be made. The specified

resource is not protected by RACF, or

RACF is not installed.

8 Unauthorized The user does not have the requested

access to the resource.

12 RACROUTE error The RACROUTE REQUEST=AUTH

service returned an unexpected error.

Compare the returned minor codes with

the SAF & RACF codes documented in

Security Server RACROUTE Macro

Reference.

14 initACEE error The initACEE callable service returned an

unexpected error. Compare the returned

minor codes with the SAF & RACF codes

documented in Security Server RACF

Callable Services.

16 Request value error A value specified in the extended

operation request is incorrect or

unsupported. Check the returned minor

codes to narrow the reason.

20 Request encoding error A decoding error was encountered

indicating the extended operation request

contains non-compliant DER encoding, or

does not match the documented ASN.1

syntax.

24 Insufficient authority The requestor does not have sufficient

authority for the requested function. The

userid associated with the LDAP bind user

must have the appropriate access to the

FACILITY class profile

IRR.LDAP.REMOTE.AUTH.

100 Internal error An internal error was encountered within

the ICTX component.

452 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 57. Remote authorization MinorCodes

MinorCode (decimal) MinorCode Meaning

0-14 MinorCode1- the SAF return code

MinorCode2 - the RACF return code

MinorCode3 - the RACF reason code

16-20 MinorCode1 is the extended operation

request parameter number within the item.

 0 - Item sequence

 1 - ItemVersion

 2 - ItemTag

 3 - User

 4 - Resource

 5 - Class

 6 - Access

 7 - LogString

MinorCode2 value indicates one of the

following:

 32 - incorrect length

 36 - incorrect value

 40 - encoding error

MinorCode3 has no defined meaning.

24-100 MinorCodes1-3 have no defined meaning.

Remote authorization audit controls

The auditor can specify whether to log access attempts based on user, class,

resource, or any criteria as described in z/OS Security Server RACF Auditor’s

Guide. The SMF type 80 records generated can be unloaded by using the

IRRADU00 utility.

Remote auditing requests

As with remote authorization, remote auditing also uses the DER-encoded ASN.1

syntax. The remote audit request is displayed as the following:

Request OID: 1.3.18.0.2.12.68

RequestValue ::= SEQUENCE {

RequestVersion INTEGER,

ItemList SEQUENCE of

 Item SEQUENCE {

 ItemVersion INTEGER,

 ItemTag INTEGER

 LinkValue OCTET STRING SIZE(8),

 Violation BOOLEAN,

 Event INTEGER,

 Qualifier INTEGER,

 Class IA5String,

 Resource IA5String,

 Logstring IA5String,

 DataFieldList SEQUENCE of

Chapter 15. Accessing RACF remotely to perform authorization checks and create audit records 453

DataField SEQUENCE{

 Type INTEGER,

 Value IA5String

 }}}

Where:

RequestValue

The name for the entire sequence of the audit request data.

RequestVersion

The format of the request value. Version 1 is the only currently supported

format.

ItemList

A sequence of one or more items, allowing multiple audit records to be

written with a single ICTX request. IBM recommends limiting the size of the

entire encoded RequestValue to 16 million bytes; however, your encoding

routine or LDAP client may impose a stricter limit.

Item A sequence of data that represents a single audit record.

ItemVersion

The format of the individual item. Version 1 is the only currently

supported format.

ItemTag

An integer set by the client for each request item and echoed in

each response item. Its purpose is to assist the client in correlating

multiple request responses. The ItemTag value does not influence

the audit processing, and does not appear in the audit record.

LinkValue

8 bytes of data used to mark related audit records. Specify 8 bytes

of zero (X’00’) if no such marking is needed.

Violation

A boolean value that indicates whether the event represents a

violation (nonzero ~ TRUE) or not (zero ~ FALSE). The value is

used in the R_auditx logging decision.

Event An integer 1 to 7 that identifies the security event type. The

possible values are:

1 Authentication

2 Authorization

3 Authorization Mapping

4 Key Management

5 Policy Management

6 Administrator Configuration

7 Administrator Action

Qualifier

An integer 0 to 3 that describes the event result. The possible

values are:

0 Success

1 Information

2 Warning

454 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

3 Failure

Class A defined RACF general resource class that may be used for audit

logging determination. It cannot be DATASET, USER, or GROUP.

Its length may be from 0 to 8 characters.

Resource

A name that may be matched against a RACF profile in the

specified class for audit logging determination. Its length may be

from 0 to 246 characters.

LogString

Any character data from 0 to 200 characters in length. It is

appended to an ICTX-defined string in the SMF log record.

DataFieldList

A sequence of type/value pairs that will be logged as SMF

relocates. Any number of relocates may be included, but the

R_auditx service limits the total amount of this relocate data to 20

kilobytes per record.

DataField

A sequence of data that represents a single relocate section

in an audit record.

Type An integer 100 to 114 corresponding to a defined relocate

number. The possible values are:

100 SAF identifier for bind user

101 Requestor’s bind user identifier

102 Originating security domain

103 Originating registry / realm

104 Originating user name

105 Mapped security domain

106 Mapped registry / realm

107 Mapped user name

108 Operation performed

109 Mechanism / object name

110 Method / function used

111 Key / certificate name

112 Caller subject initiating security event

113 Date and time security event occurred

114 Application specific data

Value Character data of the associated type that is included in the

audit record.

The remote audit response is displayed as the following:

Response OID: 1.3.18.0.2.12.69

ResponseValue ::= SEQUENCE {

ResponseVersion INTEGER,

ResponseCode INTEGER,

ItemList SEQUENCE of

Chapter 15. Accessing RACF remotely to perform authorization checks and create audit records 455

Item SEQUENCE{

 ItemVersion INTEGER,

 ItemTag INTEGER,

 MajorCode INTEGER,

 MinorCode1 INTEGER,

 MinorCode2 INTEGER,

 MinorCode3 INTEGER

 }}

Where:

ResponseValue

The name for the entire sequence of audit response data.

ResponseVersion

The format of the response value. Version 1 is the only supported format.

ResponseCode

The greatest error encountered while processing the request. See Table 58

for more details on supported ResponseCodes.

ItemList

A sequence of one or more items, which allows for multiple audit results

within a single ICTX response.

Item A sequence of data that represents a single audit request.

ItemVersion

The format of the individual item. Version 1 is the only supported

format.

ItemTag

An integer echoed from the corresponding request ItemTag. The

purpose of the ItemTag is to assist the client in correlating multiple

request responses. The ItemTag does not influence the audit

processing, and does not appear in the audit record.

MajorCode

An integer value representing the result of the audit request. See

Table 59 on page 457 for more details on error major codes.

MinorCode1

Additional details about the error. See Table 60 on page 458 for

more details on error minor codes.

Minor Code2

Additional details about the error.

Minor Code3

Additional details about the error.

Remote auditing response codes

Use the following table to understand the response codes generated from the

remote auditing processing. The ResponseCode represents the greatest error

encountered. You may experience situations in which a request item generates an

error that is not reflected in the ResponseCode, because that value is overridden by

a higher-severity error.

 Table 58. Remote auditing ResponseCodes

ResponseCode

(decimal) Meaning

0 All request items were processed successfully.

456 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 58. Remote auditing ResponseCodes (continued)

ResponseCode

(decimal) Meaning

28 Empty item list. No items are found within the ItemList sequence

of the extended operation request, so no response items are

returned.

61-70 The specified RequestVersion is not supported. Subtract 60 from

the value to determine the highest RequestVersion that the

server supports. ResponseCode 61 indicates the server

supports version 1 requests only.

other Errors or warnings encountered while processing one or more

request items. The value represents the highest MajorCode in

the set of all response items. Verify the major and minor codes

returned for each item.

 Table 59. Remote auditing MajorCodes

MajorCode

(decimal) Meaning Comment

0 Success The event is logged successfully.

2 Warning mode The event is is logged, and warning mode

is set for the specified resource. Warning

mode is a feature of RACF that allows

installations to try out security policies.

Installations can define a profile with the

WARNING attribute. When RACF performs

an authorization check using the profile, it

will log the event (if there are audit

settings) and allow the authorization check

to pass successfully. The log records can

be monitored to ensure the new policy is

operating as expected before putting the

policy into production by turning off the

WARNING attribute.

A remote client resource manager using

the remote audit service may simulate

RACF warning mode logic after submitting

an audit request for a failing authorization

event. If the MajorCode in the response

item indicates the matching resource

profile has the warning mode set, the

remote client resource manager may allow

the check to pass successfully.

3 Logging not required The event is not logged because no audit

controls are set to require it.

Chapter 15. Accessing RACF remotely to perform authorization checks and create audit records 457

Table 59. Remote auditing MajorCodes (continued)

MajorCode

(decimal) Meaning Comment

4 Undetermined The event is not logged. The conditions

suggested by the following MinorCode

combinations may or may not be

intentional administrator settings:

 4,0,0 - RACF is not installed or not

active

 8,8,8 - UAUDIT is not set, and class is

not active or not RACLISTed

 8,8,12 - UAUDIT is not set, class is

active and RACLISTed, and a covering

resource profile is not found

8 Unauthorized The user does not have authority the

R_auditx service. The userid associated

with the LDAP server must have at least

READ access to the FACILITY class

profile IRR.RAUDITX.

12 R_auditx error The R_auditx service returned an

unexpected error. Compare the returned

minor codes with the SAF & RACF codes

documented in z/OS Security Server

RACF Callable Services.

16 Request value error A value specified in the extended

operation request is incorrect or

unsupported. Check the returned minor

codes to narrow the reason.

20 Request encoding error A decoding error was encountered

indicating the extended operation request

contains non-compliant DER encoding, or

does not match the documented ASN.1

syntax.

24 Insufficient authority The requestor does not have sufficient

authority for the requested function. The

userid associated with the LDAP bind user

must have at least READ access to the

FACILITY class profile

IRR.LDAP.REMOTE.AUDIT.

100 Internal error An internal error was encountered within

the ICTX component.

 Table 60. Remote auditing MinorCodes

MinorCode (decimal) MinorCode Meaning

0-12 MinorCode1- the SAF return code

MinorCode2 - the RACF return code

MinorCode3 - the RACF reason code

458 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Table 60. Remote auditing MinorCodes (continued)

MinorCode (decimal) MinorCode Meaning

16-20 MinorCode1 is the extended operation

request parameter number within the item.

 0 - Item sequence

 1 - ItemVersion

 2 - ItemTag

 3 - LinkValue

 4 - Violation

 5 - Event

 6 - Qualifier

 7 - Class

 8 - Resource

 9 - Logstring

 10 - DataFieldList sequence

 11 - DataField sequence

 12 - Type

 13 - Value

MinorCode2 value indicates one of the

following:

 32 - incorrect length

 36 - incorrect value

 40 - encoding error

MinorCode3 has no defined meaning.

24-100 MinorCodes1-3 have no defined meaning.

Remote audit controls

The remote audit service uses the R_auditx callable service documented in z/OS

Security Server RACF Callable Services to generate SMF type 83 (subtype 4) audit

records. The IRRADU00 utility can then be used to unload the generated SMF type

83 subtype 4 records. Whether or not the R_auditx service actually writes an audit

record for an event, however, depends on the RACF audit controls. If the audit

controls do not direct RACF to log an event that was specified in a remote audit

request, the R_auditx service will not generate an audit record. If the remote

application sends a remote audit request for an operation that has not been

configured to be logged, this will be reflected in the remote audit response (a

MajorCode of 3 indicates that the event was not logged because it is not required).

There are several ways the RACF auditor can enable logging of events from remote

audit requests. For example, because the remote application will have used a

RACF user ID to authenticate with z/OS through an LDAP bind operation, the

auditor can enable logging for all remote audit events by setting UAUDIT for that

RACF user ID.

If the remote application has specified a Class and Resource in the remote auditing

requests, the auditor can enable logging for the class (using the SETROPTS

LOGOPTIONS command) or the resource (using the ADDSD AUDIT, ALTDSD

AUDIT, or ALTDSD GLOBALAUDIT commands). To do this, the auditor must know

the class and resource specified by the application submitting the remote audit

requests.

Chapter 15. Accessing RACF remotely to perform authorization checks and create audit records 459

An effective way to gain granular control over which remote application events are

logged, is to use the RACF dynamic class descriptor table (dynamic CDT) to define

custom classes to represent specific remote applications. Once you have defined a

custom class to represent a remote application, you can create resource profiles in

the class to represent specific user operations that the application supports. Then,

by manipulating the auditing options for the class and profiles, the RACF auditor

can determine the type of information logged. For example, imagine a travel

application that runs remotely and supports user operations to:

v book a flight

v cancel a flight booking

v check seat availability

v view flight information

A new custom class, @FLIGHTS is created in the dynamic CDT to represent this

remote application, and profiles BOOK, CANCEL, SEATCHECK, and VIEW are

created in this new class to represent the user operations that are supported. A

remote audit request Item will be sent by the remote application for each user

operation, and the Class and Resource parameters for each Item will identify the

travel application and the particular operation. The Class and Resource parameters

are used on the remote audit requests for logging determination on the z/OS server.

So even though the remote audit record will be sent for each operation, whether

these events are actually logged will depend on how auditing is configured for the

@FLIGHTS class and the BOOK, CANCEL, SEATCHECK, and VIEW profiles. This

gives the RACF auditor granular control over which user operations are logged.

Configuration of the audit settings on the profiles enables the RACF auditor to, for

example, log all BOOK and CANCEL requests while ignoring VIEW and

SEATCHECK requests.

SMF Record Type 83 subtype 4 records

The remote audit service logs events as SMF Type 83 subtype 4 records that can

be unloaded using the IRRADU00 utility. Each logged event has a unique event

code with a corresponding event code qualifier, or value that indicates if the event

succeeded, resulted in warning or failure, or was simply logging event information.

The event codes are described in the following table:

 Table 61. Remote audit event codes

Event Command / Service

1 Authentication

2 Authorization

3 Authorization mapping

4 Key management

5 Policy management

6 Administrator configuration

7 Administrator action

460 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

The following table describes the event code qualifiers:

 Table 62. Remote audit event code qualifiers

(Common) Event Code

Qualifier Dec (Hex) Description

(Common) Relocate type

sections

0 Successful request or

authorization.

Common relocates, 100-114

1 Event information.

2 Not a failure, but may

warrant investigation. For

authorization event, grace

period may be in effect.

3 Unsuccessful request;

unauthorized.

The following are the remote audit specific extended relocates:

 Table 63. Event-specific fields for remote audit events

Relocate XML Tag DB2 Field Name Type Length

Position

Comments Start End

100 localUser SAF_LOCAL_USER Char 8 3000 3007 SAF identifier for

bind user

101 bindUser SAF_BIND_USER Char 256 3010 3265 Requestor's bind

user identifier

102 domain SAF_DOMAIN Char 512 3268 3779 Originating

security domain

103 regName SAF_REG_NAME Char 256 3782 4037 Originating

registry / real m

104 regUser SAF_REG_USER Char 256 4040 4295 Originating user

name

105 mapDomain SAF_MAP_DOMAIN Char 512 4298 4809 Mapped security

domain

106 mapRegName SAF_MAP_REG_NAME Char 256 4812 5067 Mapped registry /

realm

107 mapRegUser SAF_MAP_REG_USER Char 256 5070 5325 Mapped user

name

108 action SAF_ACTION Char 64 5328 5391 Operation

performed

109 object SAF_OBJECT Char 64 5394 5457 Mechanism /

object name

110 method SAF_METHOD Char 64 5460 5523 Method / function

used

111 key SAF_KEY Char 256 5526 5781 Key / certificate

name

112 subjectName SAF_SUBJECT_NAME Char 256 5784 6039 Caller subject

initiating security

event

113 dateTime SAF_DATE_TIME Char 32 6042 6073 Date and time

security event

occurred

Chapter 15. Accessing RACF remotely to perform authorization checks and create audit records 461

Table 63. Event-specific fields for remote audit events (continued)

Relocate XML Tag DB2 Field Name Type Length

Position

Comments Start End

114 otherData SAF_OTHER_DATA Char 2048 6076 8123 Application

specific data

462 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2002, 2008 463

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, NY 12601-5400

USA

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Programming interface information

This document primarily documents information that is NOT intended to be used as

Programming Interfaces of EIM.

This document also documents intended Programming Interfaces that allow the

customer to write programs to obtain the services of EIM. This information is

identified where it occurs, either by an introductory statement to a chapter or

section or by the following marking:

Programming Interface information

The EIM APIs are a programming Interface. They are intended for customers to use

in customer-written programs.

End of Programming Interface information

Trademarks

The following terms are trademarks of the IBM Corporation in the United States, or

other countries, or both:

AIX

BookManager

DB2

eServer

iSeries

IBM

IBMLink

Language Environment

Library Reader

MVS

OS/390

OS/400

pSeries

464 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

RACF

Redbooks

Resource Link

S/390

SecureWay

TalkLink

VSE/ESA

WebSphere

xSeries

z/OS

zSeries

z/VM

Adobe Acrobat is a trademark of Adobe Systems Incorporated in the United States,

other countries, or both.

Intel is a trademark of Intel Corporation in the United States, other countries, or

both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in

the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

Tivoli is a trademark of International Business Machines Corporation or Tivoli

Systems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names can be trademarks or service marks

for other companies.

Notices 465

466 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Bibliography

The following lists titles and numbers of

documents referenced in this publication.

v z/OS XL C/C++ Run-Time Library Reference,

SA22-7821

v IBM Tivoli Directory Server Client Programming

for z/OS, SA23-2214

v z/OS Integrated Security Services LDAP Server

Administration and Use, SC24-5923

v IBM Tivoli Directory Server Administration and

Use for z/OS, SC23-5191

v z/OS Security Server RACF Callable Services,

SA22-7691

v z/OS Security Server RACF Command

Language Reference, SA22-7687

v z/OS Security Server RACF Security

Administrator’s Guide, SA22-7683

v z/OS TSO/E REXX Reference, SA22-7790

v z/OS UNIX System Services Command

Reference, SA22-7802

v z/OS UNIX System Services Planning,

GA22-7800

v z/OS Integrated Security Services Network

Authentication Service Administration,

SC24-5926

v z/OS Integrated Security Services Network

Authentication Service Programming,

SC24-5927

v z/OS Cryptographic Services System SSL

Programming, SC24-5901

© Copyright IBM Corp. 2002, 2008 467

468 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Index

A
access groups

adding users 166

listing 344

accesses
querying 351

adding
application registry 170

associations 174

identifier 179

policy association 183

policy filters 187

registry alias 207

registry user to registry 211

system registry 190

target association for identity in registry 211

user to EIM access group 166

administration
RACF 71

aliases
adding 207

listing 325

removing 207

allocating
EimHandle structure 230

APF-authorized libraries 59

APIs
groups having authority to use 159

retrieving
binding information 83

LDAP URL 83

Application
programmer

skills 39

application registries
adding to EIM domain 170

applications
developing 77

security for 59

associating
local identity with EIM identifier 174

associations
adding 174

removing 359

returning list of 291

attributes
changing 194, 211

getting for EIM handle 261

of registry user entry, changing 211

of registry, changing 203

setting
in EIM handle structure 383

audience xiii

authority
groups having, to use APIs 159

B
bibliography 467

binding
security for 45

binding information
profile, storing in 68, 69

retrieving
APIs for 83

setting up 68

storing in profile 68, 69

C
catclose 86

catgets 86

catopen 86

changing
attribute 194

attribute of registry 203

attribute of registry user entry 211

identifier 199

registry alias 207

registry user entry attributes 211

configuration
setting information for system 385

configuring
LDAP 49

steps for 49

connecting
to EIM domain 215

to EIM master domain controller 220

converting
EIM return code to string 241

error information to a string 79

creating
domain 53

EIM domain 53

EIM domain object 225

identifier 179

D
DBUNLOAD

using output to prime EIM domain 71

deallocating
EimHandle structure 239

default
domain LDAP URL, setting up 68

setting up domain LDAP URL 68

URL, default domain, setting up 68

default domain LDAP URL
binding information 68

defining
EIM domain

eimadmin utility 109

deleting
domain 234

© Copyright IBM Corp. 2002, 2008 469

deleting (continued)
registry 374

destroying
EimHandle structure 239

developing
applications 77

directory information for EIM 52

disabling
server from using EIM domain 71

document
audience xiii

how to use xiii

domain
connecting to 215

controllers
creating EIM domain objects on 225

creating and filling 53

deleting 234

information
listing 298

listing information 298

objects
creating 225

domain controllers
creating EIM domain objects on 225

domain objects
creating 225

E
EIM

access group
adding user to 166

administrator
skills 38, 39

tasks 39

APIs
APF-authorized libraries 59

configuration information
retrieving 377

directory information 52

domain
adding system registry to 190

attribute of registry, changing 203

attribute, changing 194

changing attribute 194

changing attribute of registry 203

connecting to 215

controllers, creating objects on 225

creating and filling 53

creating object 225

deleting 234

disabling server from using 71

information, listing 298

listing information 298

object, creating 225

preventing server from using 71

priming 71

registry, removing 374

removing registry 374

stopping server from using 71

EIM (continued)
domain (continued)

system registry, adding 190

eimadmin utility 109

group
removing users from 355

users, removing from 355

handle
getting attributes for 261

setting attributes in 383

identifier administrator
skills 38

tasks 38

identifiers
changing 199

removing 364

installing 52

skills 38

introduction 3

master domain controller
connecting to 220

messages 85

overview 3

planning 37

prerequisite products
LDAP 46

registries administrator
skills 39

tasks 39

registry X administrator
skills 38

tasks 38

requirements
LDAP protocol 46

LDAP TDBM backend 49

return code
converting to string 241

skill requirements 37

team members 37

EIM administrator
tasks 38

EIM connection
identifying 230

EIM domain
planning 40

eimAddAccess
authorizations 167

examples 168

format 166

parameters 166

purpose 166

related information 167

return values 167

eimAddApplicationRegistry
authorizations 171

examples 172

format 170

parameters 170

purpose 170

related information 171

return values 171

470 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimAddAssociation
authorizations 176

examples 177

format 174

parameters 174

purpose 174

related information 175

return values 176

eimAddIdentifier
authorizations 180

examples 181

format 179

parameters 179

purpose 179

related information 180

return values 180

eimAddPolicyAssociation
purpose 183

eimAddPolicyFilter
purpose 187

eimAddSystemRegistry
authorizations 191

examples 192

format 190

parameters 190

purpose 190

related information 191

return values 191

eimadmin
actions 110

authorizations 122

error file 132

files
error file 132

format 110

objects 110

parameters 114

purpose 110

using output to prime EIM domain 71

eimadmin utility
uses 109

eimChangeDomain
authorizations 196

examples 198

format 194

parameters 194

purpose 194

related information 196

return values 196

eimChangeIdentifier
authorizations 200

examples 202

format 199

parameters 199

purpose 199

related information 200

return values 201

eimChangeRegistry
authorizations 204

examples 205

format 203

eimChangeRegistry (continued)
parameters 203

purpose 203

related information 204

return values 204

eimChangeRegistryAlias
authorizations 208

examples 209

format 207

parameters 207

purpose 207

related information 208

return values 208

eimChangeRegistryUser
authorizations 212

examples 213

format 211

parameters 211

purpose 211

related information 212

return values 212

eimConnect
authorizations 216

examples 218

format 215

parameters 215

purpose 215

related information 216

return values 217

eimConnectToMaster
authorizations 222

examples 223

format 220

parameters 220

purpose 220

related information 221

return values 222

eimCreateDomain
authorizations 227

examples 228

format 225

parameters 225

purpose 225

related information 226

return values 227

eimCreateHandle
authorizations 236

examples 232, 237

format 234

parameters 234

purpose 234

related information 235

return values 236

eimCreateHandle?
authorizations 231

format 230

parameters 230

purpose 230

related information 231

return values 231

Index 471

eimDestroyHandle
authorizations 239

examples 240

format 239

parameters 239

purpose 239

related information 239

return values 239

eimErr2String
authorizations 241

examples 241

purpose 241

return values 241

eimErr2String service 79

eimGetAssociatedIdentifiers
authorizations 256

examples 258

format 254

parameters 254

purpose 254

related information 256

return values 257

eimGetAttribute
authorizations 262

examples 263

format 261

parameters 261

purpose 261

related information 262

return values 262

eimGetRegistryNameFromAlias
authorizations 266

examples 267

format 265

parameters 265

purpose 265

related information 266

return values 267

eimGetTargetFromIdentifier
authorizations 272

examples 273

format 270

parameters 270

purpose 270

related information 272

return values 272

eimGetTargetFromSour
authorizations 278

examples 280

format 277

parameters 277

purpose 276

related information 278

return values 279

eimGetVersion
authorizations 284

format 283

parameters 283

purpose 283

related information 284

return values 284

EimHandle structure
allocating 230

deallocating 239

eimListAccess
authorizations 288

examples 289

format 286

parameters 286

purpose 286

related information 287

return values 288

eimListAssociations
authorizations 293

examples 294

format 291

parameters 291

purpose 291

related information 293

return values 293

eimListDomains
authorizations 301

examples 302

format 298

parameters 298

purpose 298

related information 300

return values 301

eimListIdentifiers
authorizations 307

examples 308

format 305

parameters 305

purpose 305

related information 307

return values 307

eimListRegistries
authorizations 313, 319

examples 321

format 317

parameters 317

purpose 317

related information 319

return values 320

eimListRegistryAliases
authorizations 326

examples 327

format 325

parameters 325

purpose 325

related information 326

return values 327

eimListRegistryUsers
authorizations 340

examples 341

format 338

parameters 338

purpose 338

related information 340

return values 340

eimListUserAccess
authorizations 346

472 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

eimListUserAccess (continued)
examples 347

format 344

parameters 344

purpose 344

related information 346

return values 346

eimQueryAccess
authorizations 352

examples 353

format 351

parameters 351

purpose 351

related information 352

return values 353

eimRemoveAccess
authorizations 356

examples 358

format 355

parameters 355

purpose 355

related information 356

return values 357

eimRemoveAssociation
authorizations 360

examples 362

format 359

parameters 359

purpose 359

related information 360

return values 360

eimRemoveIdentifier
authorizations 365

examples 366

format 364

parameters 364

purpose 364

related information 364

return values 365

eimRemovePolicyAssociation
authorizations 368

examples 369

format 367

parameters 367

purpose 367

related information 368

return values 368

eimRemovePolicyFilter
authorizations 371

examples 373

format 371

parameters 371

purpose 371

related information 371

return values 372

eimRemoveRegistry
authorizations 374

examples 376

format 374

parameters 374

purpose 374

eimRemoveRegistry (continued)
related information 374

return values 375

eimRetrieveConfiguration
authorizations 379

examples 380

format 377

parameters 377

purpose 377

related information 379

return values 379

eimSetAttribute
authorizations 383

format 383

parameters 383

purpose 383

related information 383

return values 383

eimSetConfiguration
authorizations 386

format 385

parameters 385

purpose 385

related information 386

return values 386

eimSetConfigurationExt
authorizations 391

examples 394

format 387

parameters 387

purpose 387

related information 391

return values 392

error information
converting to string 79

error messages
eimadmin sends to stderr 132

list 85

stderr, eimadmin sends to 132

errors
converting information to string 79

example
IRR.PROXY.DEFAULTS FACILITY class, using 70

F
FACILITY class

IRR.PROXY.DEFAULTS
example of using 70

files
error file 132

filtering
identifiers 305

fprintf 86

G
getting

attributes for EIM handle 261

target identity
associated with EIM identifier 270

Index 473

getting (continued)
target identity (continued)

associated with source identity 276

groups
having authority to use APIs 159

H
handle

getting attributes for 261

setting attributes in 383

I
ICTX Java API 431

identifier associations 41

identifiers
adding 179

changing 199

creating 179

listing 254

planning considerations 42

removing 364

returning 305

identifying
EIM connection 230

identities
getting, target

associated with EIM identifier 270

associated with source 276

target, getting
associated with EIM identifier 270

associated with source 276

Identity Cache 423

identity mapping plan
developing 41

installing
EIM 52

skills 38

LDAP 49

skills 38

steps for 49

introduction to EIM 3

IRR.PROXY.DEFAULTS
example of using 70

L
LDAP 49

administrator
skills 39

tasks 39

binding information
storing in profile 68, 69

configuring 49

steps for 49

default domain URL
setting up 68

installing 49

skills 38

steps for 49

LDAP (continued)
protocol required 46

servers
requirements for EIM 46

storing
binding information in profile 68, 69

TDBM required 49

URL
retrieving 83

setting up 68

Version 3 protocol 46

listing
access groups 344

aliases for registry 325

associations 291

EIM domain information 298

identifiers 254, 305

registries
user 317

user registries 317

users
having target associations defined 338

of specified EIM access type 286

local identity
associating with EIM identifier 174

lookups
registry name not needed 70

without registry name 70

M
maintaining

per-connection information 230

mapping lookup
returning more than one user 211

mappings
removing 364

master domain controller
connecting to 220

messages
list 85

modifying
identifier 199

MVS programmer
tasks 83

N
names

registry, returning 265

Notices 463

O
overview of EIM 3

P
per-connection information, maintaining 230

474 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

planning
for EIM domain 40

for EIM implementation 37

for identifiers 42

identity mapping plan 41

policy association
adding 183

policy associations 41

policy filter
adding 187

preface xiii

preventing
server from using EIM domain 71

priming
EIM domain

eimadmin utility 109

priming EIM domain 71

printf 86

profile
binding information, storing in 68, 69

LDAP binding information, storing in 68, 69

storing LDAP binding information in 68, 69

protocol
LDAP requirement 46

publications
on CD-ROM xiii

softcopy xiii

Q
querying

access 351

R
RACF

administration 71

publications
on CD-ROM xiii

softcopy xiii

RACF administrator
tasks 39

registries
aliases

listing 325

removing 374

types of 119

user
listing 317

registry alias
changing 207

registry name
lookups without 70

registry names
returning list of 265

registry user entries
changing attributes of 211

registry users
adding to registry 211

remote authorization and auditing 447

removing
association 359

domain 234

identifier 364

registry 374

registry alias 207

user
from EIM group 355

requirements
LDAP (for EIM) 46

retrieving
binding information

APIs for 83

configuration information 377

EIM configuration information 377

LDAP URL
APIs for 83

URL
APIs for 83

returning
aliases for registry 325

associations 291

identifiers 305

list of aliases for registry 325

list of identifiers 254

list of registry names 265

more than one user from mapping lookup 211

roles 37

S
sample

IRR.PROXY.DEFAULTS FACILITY class, using 70

security
applications 59

binding 45

server
disabling from using EIM domain 71

preventing from using EIM domain 71

stopping from using EIM domain 71

services
eimErr2String 79

setting
attributes

in EIM handle structure 383

configuration information
for system 385

setting up
binding information 68

default domain LDAP URL 68

LDAP URL 68

skills
Application programmer 39

EIM administrator 38, 39

EIM identifier administrator 38

EIM registries administrator 39

EIM registry X administrator 38

installing EIM 38

LDAP administrator 39

requirements 37

setting up EIM 38

Index 475

skills (continued)
User registry administrator 39

Web server programmer 38

z/OS system programmer 39

SMP/E 52

sprintf 86

stderr
eimadmin sending error messages to 132

steps
binding information

storing in profile 68, 69

configuring
LDAP 49

configuring LDAP 49

creating EIM domain 53

disabling
server from using EIM domain 71

domain, creating and filling 53

EIM domain, creating and filling 53

eimErr2String, using 79

filling EIM domain 53

installing
LDAP 49

installing LDAP 49

LDAP binding information
storing in profile 68, 69

LDAP, installing and configuring 49

lookups without registry name, setting up 70

preventing
server from using EIM domain 71

server, disabling from using EIM domain 71

setting up
binding information 68

default domain LDAP URL 68

LDAP URL 68

setting up lookups without registry name 70

stopping
server from using EIM domain 71

storing
LDAP binding information in profile 68, 69

using eimErr2String 79

stopping
server from using EIM domain 71

storing
binding information in profile 68, 69

LDAP binding information in profile 68, 69

system registries
adding 190

T
target associations

adding for identity in registry 211

listing users with 338

target identities
getting

associated with EIM identifier 270

associated with source 276

tasks
EIM administrator 38, 39

EIM identifier administrator 38

tasks (continued)
EIM registries administrator 39

EIM registry X administrator 38

LDAP administrator 39

MVS programmer 83

RACF administrator 39

z/OS system programmer 39

TDBM 49

team members 37

types of
registries 119

U
UNIX programmer

application development 77

URL
retrieving

APIs for 83

user
returning more than one from mapping lookup 211

user registries
listing 317

User registry administrator
skills 39

users
adding to EIM access group 166

listing 286

those with target associations defined 338

removing
from EIM group 355

using this document
how to xiii

who should xiii

V
Version 3 protocol (LDAP) 46

W
Web server programmer

skills 38

Z
z/OS system programmer

installing EIM 52

recording directory information 52

skills 39

tasks 39

476 z/OS V1R10.0 Integrated Security Services Enterprise Identity Mapping (EIM) Guide and Reference

Readers’ Comments — We’d Like to Hear from You

z/OS

Integrated Security Services

Enterprise Identity Mapping (EIM)

Guide and Reference

 Publication No. SA22-7875-07

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: mhvrcfs@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SA22-7875-07

SA22-7875-07

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

MHVRCFS, Mail Station P181

2455 South Road

Poughkeepsie, NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

Printed in USA

SA22-7875-07

	Contents
	Tables
	Figures
	About this document
	Who should use this document
	How to use this document
	Where to find more information
	Softcopy publications

	Other sources of information
	Internet sources

	To request copies of IBM publications

	Summary of changes
	Part 1. EIM concepts and use
	Chapter 1. Enterprise Identity Mapping (EIM)
	The problem: Managing multiple user registries
	Current approaches
	The EIM approach

	Chapter 2. EIM concepts
	EIM domain controller
	EIM domain
	EIM identifier
	EIM identifier representing a person
	EIM identifier representing an entity
	EIM identifiers and aliasing

	EIM registry definition
	EIM registry definitions and aliasing
	System and application registry definitions

	EIM associations
	Identifier associations
	Source and target association relationship

	Policy associations
	Lookup information

	EIM lookup operation
	Mapping policy support and enablement
	EIM access control

	Chapter 3. Migration considerations
	Migration from release to release
	Migration from EIM Release 6
	Migration from EIM Release 5 - Starting point
	EIM domain controller
	EIM client applications
	Removal of SETROPTS EIMREGISTRY/NOEIMREGISTRY

	Chapter 4. Planning for EIM
	Identifying skill requirements
	Team members

	Planning for EIM client applications
	Planning for an EIM domain
	Planning for EIM registries
	Developing an identity mapping plan
	Planning considerations for identifiers
	Planning considerations for associations

	Accessing the EIM domain

	Planning considerations for an EIM domain controller
	Planning EIM administration tools
	Customizing EIM on your operating system
	Task roadmap for implementing EIM

	Chapter 5. Setting up EIM on z/OS
	Steps for installing and configuring the EIM domain controller on z/OS
	Installing and configuring EIM on z/OS
	Steps for using the eimadmin utility to manage an EIM domain
	Domain authentication methods
	Using simple binds
	Using CRAM-MD5 password protection
	Using digital certificates
	Using Kerberos
	Using Secure Sockets Layer (SSL)

	Installation considerations for applications
	Configuration considerations for enabling remote services
	Ongoing administration
	Managing registries
	Adding a system and application registry
	Listing a registry
	Removing a registry

	Working with registry aliases
	Assigning an alias
	Listing an alias
	Removing an alias
	Assigning an alias name to a different registry

	Adding a new user
	Adding an identifier
	Adding associations
	Listing associations

	Removing a user
	Removing associations
	Removing an identifier

	Changing access authority
	Adding access authorities
	Listing access authorities
	Removing access authorities

	Chapter 6. Using RACF commands to set up and tailor EIM
	Using RACF for EIM domain access
	Setting up default domain LDAP URL and binding information
	Storing LDAP binding information in a profile
	Adding EIM domain and bind information for servers or administrative users
	Adding a system default using the IRR.EIM.DEFAULTS profile
	Adding a system default using the IRR.PROXY.DEFAULTS profile

	Optionally setting up a registry name for your local RACF registry
	Steps for setting up lookups that do not need a registry name

	Ongoing RACF administration
	Disabling use of an EIM domain
	Steps for disabling use of an EIM domain

	Using output from the RACF database unload utility and eimadmin to prime your EIM domain with information

	Chapter 7. Developing applications
	Writing EIM applications
	Default registry names
	Defining private user registry types in EIM
	Define a private user registry type in EIM

	Building an EIM application
	C/C++ Compile considerations
	C/C++ Link-edit considerations

	Preparing to run an EIM application
	Accessing RACF profile checks
	Special considerations for applications that will be shared between different releases of z/OS

	APIs for retrieving the LDAP URL and binding information
	Determining why a mapping is not returned

	Chapter 8. Messages
	Chapter 9. The eimadmin utility
	eimadmin
	Examples for working with policies
	Creating an x.509 registry
	Enabling or disabling a registry for lookup or policy operations
	Enabling or disabling a domain's use of policies
	Creating an association using the name stored within a certificate
	Listing an association that was created using a certificate
	Removing an association using the name stored within a certificate
	Creating a domain policy
	Listing the domain policy
	Deleting a domain policy
	Creating a registry policy
	Listing a registry policy
	Deleting a registry policy
	Creating a filter policy
	Listing the filter policy association
	Deleting a filter policy

	Examples for listing various objects without an input file
	Using an input file
	Input file requirements
	Input file contents
	The label line
	Processing differences between command-line options and input files

	The output file
	The error file
	Example for adding a list of identifiers to an EIM domain
	Using eimadmin with the tabular output of SMF Unload

	Chapter 10. EIM Auditing
	Auditing EIM events
	Categories of EIM events
	How events are audited
	What goes into an audit record

	Working with audit records
	The SMF Record Type 83 subtype 2 records
	The XML output from the RACF SMF Unload Utility
	The tabular output from the RACF SMF Unload utility

	Chapter 11. EIM APIs
	Authority to use APIs
	Java APIs
	Authorization to use EIM Services
	Mapping C++ to Java APIs
	Obtaining documentation for the Java APIs

	EimRC -- EIM return code parameter for C/C++
	Field descriptions

	eimAddAccess
	eimAddApplicationRegistry
	eimAddAssociation
	eimAddIdentifier
	eimAddPolicyAssociation
	eimAddPolicyFilter
	eimAddSystemRegistry
	eimChangeDomain
	eimChangeIdentifier
	eimChangeRegistry
	eimChangeRegistryAlias
	eimChangeRegistryUser
	eimConnect
	eimConnectToMaster
	eimCreateDomain
	eimCreateHandle
	eimDeleteDomain
	eimDestroyHandle
	eimErr2String
	eimFormatPolicyFilter
	eimFormatUserIdentity
	eimGetAssociatedIdentifiers
	eimGetAttribute
	eimGetRegistryNameFromAlias
	eimGetTargetFromIdentifier
	eimGetTargetFromSource
	eimGetVersion
	eimListAccess
	eimListAssociations
	eimListDomains
	eimListIdentifiers
	eimListPolicyFilters
	eimListRegistries
	eimListRegistryAliases
	eimListRegistryAssociations
	eimListRegistryUsers
	eimListUserAccess
	eimQueryAccess
	eimRemoveAccess
	eimRemoveAssociation
	eimRemoveIdentifier
	eimRemovePolicyAssociation
	eimRemovePolicyFilter
	eimRemoveRegistry
	eimRetrieveConfiguration
	eimSetAttribute
	eimSetConfiguration
	eimSetConfigurationExt

	Chapter 12. EIM header file and example
	eim.h
	Example for creating LDAP suffix and user objects

	Part 2. Working with remote services
	Chapter 13. The z/OS Identity Cache
	How the z/OS Identity Cache works
	Configuring your environment to use the z/OS Identity Cache
	Configuring Java applications to use the z/OS Identity Cache
	Configuring the z/OS Identity Cache
	Configuring user ID mapping
	Configuring Identity Cache connection defaults

	Configuring z/OS sysplex for the Identity Cache

	Chapter 14. ICTX Java API
	Configuring the IBM Tivoli Directory Server for remote services support
	/com/ibm/ictx/authenticationcontext package
	Creating an identity context object from authentication context information
	Delegating an identity context object
	Parsing an identity context object for authentication context information

	/com/ibm/ictx/identitycontext package
	Creating a storage mechanism object for interacting with the z/OS Identity Cache
	Storing an identity context object in the z/OS Identity Cache
	Retrieving an identity context object from the z/OS Identity Cache

	/com/ibm/ictx/util package
	Sample ICTX application

	Chapter 15. Accessing RACF remotely to perform authorization checks and create audit records
	Using remote authorization and audit
	Profile authorizations for working with remote services
	Remote authorization requests
	Remote authorization ResponseCodes
	Remote authorization audit controls

	Remote auditing requests
	Remote auditing response codes
	Remote audit controls
	SMF Record Type 83 subtype 4 records

	Notices
	Programming interface information
	Trademarks

	Bibliography
	Index
	Readers’ Comments — We'd Like to Hear from You

